ps_roi_align.cpp 6.09 KB
Newer Older
1
#include "ps_roi_align.h"
2
3
4

#include <torch/autograd.h>
#include <torch/types.h>
5

6
7
namespace vision {
namespace ops {
8
9

std::tuple<at::Tensor, at::Tensor> ps_roi_align(
10
11
    const at::Tensor& input,
    const at::Tensor& rois,
12
13
14
15
16
17
18
19
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio) {
  static auto op = c10::Dispatcher::singleton()
                       .findSchemaOrThrow("torchvision::ps_roi_align", "")
                       .typed<decltype(ps_roi_align)>();
  return op.call(
20
21
22
      input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio);
}

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
at::Tensor _ps_roi_align_backward(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  static auto op =
      c10::Dispatcher::singleton()
          .findSchemaOrThrow("torchvision::_ps_roi_align_backward", "")
          .typed<decltype(_ps_roi_align_backward)>();
  return op.call(
40
41
      grad,
      rois,
42
      channel_mapping,
43
44
45
46
47
48
49
50
51
52
      spatial_scale,
      pooled_height,
      pooled_width,
      sampling_ratio,
      batch_size,
      channels,
      height,
      width);
}

53
54
55
56
57
58
59
TORCH_LIBRARY_FRAGMENT(torchvision, m) {
  m.def(
      "ps_roi_align(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio) -> (Tensor, Tensor)");
  m.def(
      "_ps_roi_align_backward(Tensor grad, Tensor rois, Tensor channel_mapping, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio, int batch_size, int channels, int height, int width) -> Tensor");
}

60
61
namespace {

62
63
64
class PSROIAlignFunction
    : public torch::autograd::Function<PSROIAlignFunction> {
 public:
65
66
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
67
68
69
70
71
72
      const torch::autograd::Variable& input,
      const torch::autograd::Variable& rois,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width,
      int64_t sampling_ratio) {
73
74
75
76
77
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
    ctx->saved_data["sampling_ratio"] = sampling_ratio;
    ctx->saved_data["input_shape"] = input.sizes();
78
79
    at::AutoNonVariableTypeMode g;
    auto result = ps_roi_align(
80
81
82
83
84
85
        input,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio);
86

87
88
89
90
    auto output = std::get<0>(result);
    auto channel_mapping = std::get<1>(result);
    ctx->save_for_backward({rois, channel_mapping});
    ctx->mark_non_differentiable({channel_mapping});
91

92
93
94
    return {output, channel_mapping};
  }

95
96
  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
97
      const torch::autograd::variable_list& grad_output) {
98
99
100
101
102
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
    auto channel_mapping = saved[1];
    auto input_shape = ctx->saved_data["input_shape"].toIntList();
103
    auto grad_in = _ps_roi_align_backward(
104
105
106
107
108
109
110
111
112
113
114
        grad_output[0],
        rois,
        channel_mapping,
        ctx->saved_data["spatial_scale"].toDouble(),
        ctx->saved_data["pooled_height"].toInt(),
        ctx->saved_data["pooled_width"].toInt(),
        ctx->saved_data["sampling_ratio"].toInt(),
        input_shape[0],
        input_shape[1],
        input_shape[2],
        input_shape[3]);
115

116
117
118
119
120
121
    return {grad_in,
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable()};
122
123
124
  }
};

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// TODO: There should be an easier way to do this
class PSROIAlignBackwardFunction
    : public torch::autograd::Function<PSROIAlignBackwardFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& grad,
      const torch::autograd::Variable& rois,
      const torch::autograd::Variable& channel_mapping,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width,
      int64_t sampling_ratio,
      int64_t batch_size,
      int64_t channels,
      int64_t height,
      int64_t width) {
    at::AutoNonVariableTypeMode g;
    auto grad_in = _ps_roi_align_backward(
        grad,
        rois,
        channel_mapping,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio,
        batch_size,
        channels,
        height,
        width);

    return {grad_in};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    TORCH_CHECK(0, "double backwards on ps_roi_align not supported");
  }
};

166
std::tuple<at::Tensor, at::Tensor> ps_roi_align_autograd(
167
168
    const at::Tensor& input,
    const at::Tensor& rois,
169
170
171
172
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio) {
173
174
  auto result = PSROIAlignFunction::apply(
      input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio);
175
176

  return std::make_tuple(result[0], result[1]);
177
}
178

179
at::Tensor ps_roi_align_backward_autograd(
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  return PSROIAlignBackwardFunction::apply(
      grad,
      rois,
      channel_mapping,
      spatial_scale,
      pooled_height,
      pooled_width,
      sampling_ratio,
      batch_size,
      channels,
      height,
      width)[0];
203
}
204

205
206
} // namespace

207
208
209
210
211
TORCH_LIBRARY_IMPL(torchvision, Autograd, m) {
  m.impl("ps_roi_align", ps_roi_align_autograd);
  m.impl("_ps_roi_align_backward", ps_roi_align_backward_autograd);
}

212
213
} // namespace ops
} // namespace vision