video_reader.py 7.82 KB
Newer Older
1
2
import warnings
from typing import Any, Dict, Iterator, Optional
3
4
5
6
7
8
9
10
11

import torch

from ..utils import _log_api_usage_once

try:
    from ._load_gpu_decoder import _HAS_GPU_VIDEO_DECODER
except ModuleNotFoundError:
    _HAS_GPU_VIDEO_DECODER = False
12
from ._video_opt import _HAS_VIDEO_OPT
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

if _HAS_VIDEO_OPT:

    def _has_video_opt() -> bool:
        return True

else:

    def _has_video_opt() -> bool:
        return False


class VideoReader:
    """
    Fine-grained video-reading API.
    Supports frame-by-frame reading of various streams from a single video
    container.

31
32
    .. betastatus:: VideoReader class

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    Example:
        The following examples creates a :mod:`VideoReader` object, seeks into 2s
        point, and returns a single frame::

            import torchvision
            video_path = "path_to_a_test_video"
            reader = torchvision.io.VideoReader(video_path, "video")
            reader.seek(2.0)
            frame = next(reader)

        :mod:`VideoReader` implements the iterable API, which makes it suitable to
        using it in conjunction with :mod:`itertools` for more advanced reading.
        As such, we can use a :mod:`VideoReader` instance inside for loops::

            reader.seek(2)
            for frame in reader:
                frames.append(frame['data'])
            # additionally, `seek` implements a fluent API, so we can do
            for frame in reader.seek(2):
                frames.append(frame['data'])

        With :mod:`itertools`, we can read all frames between 2 and 5 seconds with the
        following code::

            for frame in itertools.takewhile(lambda x: x['pts'] <= 5, reader.seek(2)):
                frames.append(frame['data'])

        and similarly, reading 10 frames after the 2s timestamp can be achieved
        as follows::

            for frame in itertools.islice(reader.seek(2), 10):
                frames.append(frame['data'])

    .. note::

        Each stream descriptor consists of two parts: stream type (e.g. 'video') and
        a unique stream id (which are determined by the video encoding).
        In this way, if the video contaner contains multiple
        streams of the same type, users can acces the one they want.
        If only stream type is passed, the decoder auto-detects first stream of that type.

    Args:
75
76
77
78
79
80
        src (string, bytes object, or tensor): The media source.
            If string-type, it must be a file path supported by FFMPEG.
            If bytes shoud be an in memory representatin of a file supported by FFMPEG.
            If Tensor, it is interpreted internally as byte buffer.
            It must be one-dimensional, of type ``torch.uint8``.

81
82
83
84
85
86
87
88
89
90
91


        stream (string, optional): descriptor of the required stream, followed by the stream id,
            in the format ``{stream_type}:{stream_id}``. Defaults to ``"video:0"``.
            Currently available options include ``['video', 'audio']``

        num_threads (int, optional): number of threads used by the codec to decode video.
            Default value (0) enables multithreading with codec-dependent heuristic. The performance
            will depend on the version of FFMPEG codecs supported.

        device (str, optional): Device to be used for decoding. Defaults to ``"cpu"``.
92
            To use GPU decoding, pass ``device="cuda"``.
93

94
95
96
97
98
99
100
        path (str, optional):
            .. warning:
                This parameter was deprecated in ``0.15`` and will be removed in ``0.17``.
                Please use ``src`` instead.



101
102
    """

103
104
105
106
107
108
109
110
    def __init__(
        self,
        src: str = "",
        stream: str = "video",
        num_threads: int = 0,
        device: str = "cpu",
        path: Optional[str] = None,
    ) -> None:
111
112
113
114
115
116
117
        _log_api_usage_once(self)
        self.is_cuda = False
        device = torch.device(device)
        if device.type == "cuda":
            if not _HAS_GPU_VIDEO_DECODER:
                raise RuntimeError("Not compiled with GPU decoder support.")
            self.is_cuda = True
118
            self._c = torch.classes.torchvision.GPUDecoder(src, device)
119
120
121
122
123
124
125
126
127
            return
        if not _has_video_opt():
            raise RuntimeError(
                "Not compiled with video_reader support, "
                + "to enable video_reader support, please install "
                + "ffmpeg (version 4.2 is currently supported) and "
                + "build torchvision from source."
            )

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        if src == "":
            if path is None:
                raise TypeError("src cannot be empty")
            src = path
            warnings.warn("path is deprecated and will be removed in 0.17. Please use src instead")

        elif isinstance(src, bytes):
            src = torch.frombuffer(src, dtype=torch.uint8)

        if isinstance(src, str):
            self._c = torch.classes.torchvision.Video(src, stream, num_threads)
        elif isinstance(src, torch.Tensor):
            if self.is_cuda:
                raise RuntimeError("GPU VideoReader cannot be initialized from Tensor or bytes object.")
            self._c = torch.classes.torchvision.Video("", "", 0)
            self._c.init_from_memory(src, stream, num_threads)
        else:
            raise TypeError("`src` must be either string, Tensor or bytes object.")
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

    def __next__(self) -> Dict[str, Any]:
        """Decodes and returns the next frame of the current stream.
        Frames are encoded as a dict with mandatory
        data and pts fields, where data is a tensor, and pts is a
        presentation timestamp of the frame expressed in seconds
        as a float.

        Returns:
            (dict): a dictionary and containing decoded frame (``data``)
            and corresponding timestamp (``pts``) in seconds

        """
        if self.is_cuda:
            frame = self._c.next()
            if frame.numel() == 0:
                raise StopIteration
            return {"data": frame}
        frame, pts = self._c.next()
        if frame.numel() == 0:
            raise StopIteration
        return {"data": frame, "pts": pts}

    def __iter__(self) -> Iterator[Dict[str, Any]]:
        return self

    def seek(self, time_s: float, keyframes_only: bool = False) -> "VideoReader":
        """Seek within current stream.

        Args:
            time_s (float): seek time in seconds
            keyframes_only (bool): allow to seek only to keyframes

        .. note::
            Current implementation is the so-called precise seek. This
            means following seek, call to :mod:`next()` will return the
            frame with the exact timestamp if it exists or
            the first frame with timestamp larger than ``time_s``.
        """
        self._c.seek(time_s, keyframes_only)
        return self

    def get_metadata(self) -> Dict[str, Any]:
        """Returns video metadata

        Returns:
            (dict): dictionary containing duration and frame rate for every stream
        """
        return self._c.get_metadata()

    def set_current_stream(self, stream: str) -> bool:
        """Set current stream.
        Explicitly define the stream we are operating on.

        Args:
            stream (string): descriptor of the required stream. Defaults to ``"video:0"``
                Currently available stream types include ``['video', 'audio']``.
                Each descriptor consists of two parts: stream type (e.g. 'video') and
                a unique stream id (which are determined by video encoding).
                In this way, if the video contaner contains multiple
                streams of the same type, users can acces the one they want.
                If only stream type is passed, the decoder auto-detects first stream
                of that type and returns it.

        Returns:
            (bool): True on succes, False otherwise
        """
        if self.is_cuda:
            print("GPU decoding only works with video stream.")
        return self._c.set_current_stream(stream)