mnasnet.py 6.87 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import math

import torch
import torch.nn as nn
from .utils import load_state_dict_from_url

__all__ = ['MNASNet', 'mnasnet0_5', 'mnasnet0_75', 'mnasnet1_0', 'mnasnet1_3']

_MODEL_URLS = {
    "mnasnet0_5":
11
    "https://download.pytorch.org/models/mnasnet0.5_top1_67.592-7c6cb539b9.pth",
12
13
    "mnasnet0_75": None,
    "mnasnet1_0":
14
    "https://download.pytorch.org/models/mnasnet1.0_top1_73.512-f206786ef8.pth",
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    "mnasnet1_3": None
}

# Paper suggests 0.9997 momentum, for TensorFlow. Equivalent PyTorch momentum is
# 1.0 - tensorflow.
_BN_MOMENTUM = 1 - 0.9997


class _InvertedResidual(nn.Module):

    def __init__(self, in_ch, out_ch, kernel_size, stride, expansion_factor,
                 bn_momentum=0.1):
        super(_InvertedResidual, self).__init__()
        assert stride in [1, 2]
        assert kernel_size in [3, 5]
        mid_ch = in_ch * expansion_factor
        self.apply_residual = (in_ch == out_ch and stride == 1)
        self.layers = nn.Sequential(
            # Pointwise
            nn.Conv2d(in_ch, mid_ch, 1, bias=False),
            nn.BatchNorm2d(mid_ch, momentum=bn_momentum),
            nn.ReLU(inplace=True),
            # Depthwise
            nn.Conv2d(mid_ch, mid_ch, kernel_size, padding=kernel_size // 2,
                      stride=stride, groups=mid_ch, bias=False),
            nn.BatchNorm2d(mid_ch, momentum=bn_momentum),
            nn.ReLU(inplace=True),
            # Linear pointwise. Note that there's no activation.
            nn.Conv2d(mid_ch, out_ch, 1, bias=False),
            nn.BatchNorm2d(out_ch, momentum=bn_momentum))

    def forward(self, input):
        if self.apply_residual:
            return self.layers(input) + input
        else:
            return self.layers(input)


def _stack(in_ch, out_ch, kernel_size, stride, exp_factor, repeats,
           bn_momentum):
    """ Creates a stack of inverted residuals. """
    assert repeats >= 1
    # First one has no skip, because feature map size changes.
    first = _InvertedResidual(in_ch, out_ch, kernel_size, stride, exp_factor,
                              bn_momentum=bn_momentum)
    remaining = []
    for _ in range(1, repeats):
        remaining.append(
            _InvertedResidual(out_ch, out_ch, kernel_size, 1, exp_factor,
                              bn_momentum=bn_momentum))
    return nn.Sequential(first, *remaining)


def _round_to_multiple_of(val, divisor, round_up_bias=0.9):
    """ Asymmetric rounding to make `val` divisible by `divisor`. With default
    bias, will round up, unless the number is no more than 10% greater than the
    smaller divisible value, i.e. (83, 8) -> 80, but (84, 8) -> 88. """
    assert 0.0 < round_up_bias < 1.0
    new_val = max(divisor, int(val + divisor / 2) // divisor * divisor)
    return new_val if new_val >= round_up_bias * val else new_val + divisor


def _scale_depths(depths, alpha):
    """ Scales tensor depths as in reference MobileNet code, prefers rouding up
    rather than down. """
    return [_round_to_multiple_of(depth * alpha, 8) for depth in depths]


class MNASNet(torch.nn.Module):
    """ MNASNet, as described in https://arxiv.org/pdf/1807.11626.pdf.
    >>> model = MNASNet(1000, 1.0)
    >>> x = torch.rand(1, 3, 224, 224)
    >>> y = model(x)
    >>> y.dim()
    1
    >>> y.nelement()
    1000
    """

    def __init__(self, alpha, num_classes=1000, dropout=0.2):
        super(MNASNet, self).__init__()
        depths = _scale_depths([24, 40, 80, 96, 192, 320], alpha)
        layers = [
            # First layer: regular conv.
            nn.Conv2d(3, 32, 3, padding=1, stride=2, bias=False),
            nn.BatchNorm2d(32, momentum=_BN_MOMENTUM),
            nn.ReLU(inplace=True),
            # Depthwise separable, no skip.
            nn.Conv2d(32, 32, 3, padding=1, stride=1, groups=32, bias=False),
            nn.BatchNorm2d(32, momentum=_BN_MOMENTUM),
            nn.ReLU(inplace=True),
            nn.Conv2d(32, 16, 1, padding=0, stride=1, bias=False),
            nn.BatchNorm2d(16, momentum=_BN_MOMENTUM),
            # MNASNet blocks: stacks of inverted residuals.
            _stack(16, depths[0], 3, 2, 3, 3, _BN_MOMENTUM),
            _stack(depths[0], depths[1], 5, 2, 3, 3, _BN_MOMENTUM),
            _stack(depths[1], depths[2], 5, 2, 6, 3, _BN_MOMENTUM),
            _stack(depths[2], depths[3], 3, 1, 6, 2, _BN_MOMENTUM),
            _stack(depths[3], depths[4], 5, 2, 6, 4, _BN_MOMENTUM),
            _stack(depths[4], depths[5], 3, 1, 6, 1, _BN_MOMENTUM),
            # Final mapping to classifier input.
            nn.Conv2d(depths[5], 1280, 1, padding=0, stride=1, bias=False),
            nn.BatchNorm2d(1280, momentum=_BN_MOMENTUM),
            nn.ReLU(inplace=True),
        ]
        self.layers = nn.Sequential(*layers)
        self.classifier = nn.Sequential(nn.Dropout(p=dropout, inplace=True),
                                        nn.Linear(1280, num_classes))
        self._initialize_weights()

    def forward(self, x):
        x = self.layers(x)
        # Equivalent to global avgpool and removing H and W dimensions.
        x = x.mean([2, 3])
        return self.classifier(x)

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out",
                                        nonlinearity="relu")
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0.01)
                nn.init.zeros_(m.bias)


146
def _load_pretrained(model_name, model, progress):
147
148
149
150
    if model_name not in _MODEL_URLS or _MODEL_URLS[model_name] is None:
        raise ValueError(
            "No checkpoint is available for model type {}".format(model_name))
    checkpoint_url = _MODEL_URLS[model_name]
151
    model.load_state_dict(load_state_dict_from_url(checkpoint_url, progress=progress))
152
153


154
def mnasnet0_5(pretrained=False, progress=True, **kwargs):
155
156
157
    """ MNASNet with depth multiplier of 0.5. """
    model = MNASNet(0.5, **kwargs)
    if pretrained:
158
        _load_pretrained("mnasnet0_5", model, progress)
159
160
161
    return model


162
def mnasnet0_75(pretrained=False, progress=True, **kwargs):
163
164
165
    """ MNASNet with depth multiplier of 0.75. """
    model = MNASNet(0.75, **kwargs)
    if pretrained:
166
        _load_pretrained("mnasnet0_75", model, progress)
167
168
169
    return model


170
def mnasnet1_0(pretrained=False, progress=True, **kwargs):
171
172
173
    """ MNASNet with depth multiplier of 1.0. """
    model = MNASNet(1.0, **kwargs)
    if pretrained:
174
        _load_pretrained("mnasnet1_0", model, progress)
175
176
177
    return model


178
def mnasnet1_3(pretrained=False, progress=True, **kwargs):
179
180
181
    """ MNASNet with depth multiplier of 1.3. """
    model = MNASNet(1.3, **kwargs)
    if pretrained:
182
        _load_pretrained("mnasnet1_3", model, progress)
183
    return model