cifar.py 5.16 KB
Newer Older
Soumith Chintala's avatar
Soumith Chintala committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from __future__ import print_function
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
import numpy as np
import sys
if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle

class CIFAR10(data.Dataset):
    base_folder = 'cifar-10-batches-py'
    url = "http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
    filename = "cifar-10-python.tar.gz"
    tgz_mdf = 'c58f30108f718f92721af3b95e74349a'
    train_list = [
            ['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
            ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
            ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
            ['data_batch_4', '634d18415352ddfa80567beed471001a'],
            ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
    ]

    test_list = [
            ['test_batch', '40351d587109b95175f43aff81a1287e'],
    ]

    def __init__(self, root, train=True, transform=None, target_transform=None, download=False):
        self.root = root
        self.transform = transform
        self.target_transform = target_transform
        self.train = train # training set or test set
        
        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError('Dataset not found or corrupted.' 
                               + ' You can use download=True to download it')
                
        # now load the picked numpy arrays
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        if self.train:
            self.train_data = []
            self.train_labels = []
            for fentry in self.train_list:
                f = fentry[0]
                file = os.path.join(root, self.base_folder, f)
                fo = open(file, 'rb')
                entry = pickle.load(fo)
                self.train_data.append(entry['data'])
                if 'labels' in entry:
                    self.train_labels += entry['labels']
                else:
                    self.train_labels += entry['fine_labels']
                fo.close()

            self.train_data = np.concatenate(self.train_data)
            self.train_data = self.train_data.reshape((50000, 3, 32, 32))
        else:
            f = self.test_list[0][0]
Soumith Chintala's avatar
Soumith Chintala committed
64
65
66
            file = os.path.join(root, self.base_folder, f)
            fo = open(file, 'rb')
            entry = pickle.load(fo)
67
            self.test_data = entry['data']
Soumith Chintala's avatar
Soumith Chintala committed
68
            if 'labels' in entry:
69
                self.test_labels = entry['labels']
Soumith Chintala's avatar
Soumith Chintala committed
70
            else:
71
                self.test_labels = entry['fine_labels']
Soumith Chintala's avatar
Soumith Chintala committed
72
            fo.close()
73
            self.test_data = self.test_data.reshape((10000, 3, 32, 32))
Soumith Chintala's avatar
Soumith Chintala committed
74
75
76
77
78
79

    def __getitem__(self, index):
        if self.train:
            img, target = self.train_data[index], self.train_labels[index]
        else:
            img, target = self.test_data[index], self.test_labels[index]
80
81
82
83
            
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(np.transpose(img, (1,2,0)))
Soumith Chintala's avatar
Soumith Chintala committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        if self.train:
            return 50000
        else:
            return 10000

    def _check_integrity(self):
        import hashlib
        root = self.root
        for fentry in (self.train_list + self.test_list):
            filename, md5 = fentry[0], fentry[1]
            fpath = os.path.join(root, self.base_folder, filename)
            if not os.path.isfile(fpath):
                return False
            md5c = hashlib.md5(open(fpath, 'rb').read()).hexdigest()
            if md5c != md5:
                return False
        return True

    def download(self):
        from six.moves import urllib
        import tarfile
        import hashlib

        root = self.root
        fpath = os.path.join(root, self.filename)

        try:
            os.makedirs(root)
        except OSError as e:
            if e.errno == errno.EEXIST:
                pass
            else:
                raise

        if self._check_integrity():
            print('Files already downloaded and verified')
            return
        
        # downloads file
        if os.path.isfile(fpath) and \
           hashlib.md5(open(fpath, 'rb').read()).hexdigest() == self.tgz_md5:
            print('Using downloaded file: ' + fpath)
        else:
            print('Downloading ' + self.url + ' to ' + fpath)
            urllib.request.urlretrieve(self.url, fpath)

        # extract file
        cwd = os.getcwd()
        print('Extracting tar file')
        tar = tarfile.open(fpath, "r:gz")
        os.chdir(root)        
        tar.extractall()
        tar.close()
        os.chdir(cwd)
        print('Done!')


class CIFAR100(CIFAR10):
    base_folder = 'cifar-100-python'
    url = "http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
    filename = "cifar-100-python.tar.gz"
    tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
    train_list = [
            ['train', '16019d7e3df5f24257cddd939b257f8d'],
    ]

    test_list = [
            ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
    ]