cityscapes.py 5.12 KB
Newer Older
Michael Kösel's avatar
Michael Kösel committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import json
import os

import torch.utils.data as data
from PIL import Image


class Cityscapes(data.Dataset):
    """`Cityscapes <http://www.cityscapes-dataset.com/>`_ Dataset.
    Args:
        root (string): Root directory of dataset where directory ``leftImg8bit``
            and ``gtFine`` or ``gtCoarse`` are located.
        split (string, optional): The image split to use, ``train``, ``test`` or ``val`` if mode="gtFine"
            otherwise ``train``, ``train_extra`` or ``val``
        mode (string, optional): The quality mode to use, ``gtFine`` or ``gtCoarse``
        target_type (string, optional): Type of target to use, ``instance``, ``semantic``, ``polygon``
            or ``color``
        transform (callable, optional): A function/transform that takes in a PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """

    def __init__(self, root, split='train', mode='gtFine', target_type='instance',
                 transform=None, target_transform=None):
        self.root = os.path.expanduser(root)
        self.images_dir = os.path.join(self.root, 'leftImg8bit', split)
        self.targets_dir = os.path.join(self.root, mode, split)
        self.transform = transform
        self.target_transform = target_transform
        self.target_type = target_type
        self.split = split
        self.mode = mode
        self.images = []
        self.targets = []

        if mode not in ['gtFine', 'gtCoarse']:
            raise ValueError('Invalid mode! Please use mode="gtFine" or mode="gtCoarse"')

        if mode == 'gtFine' and split not in ['train', 'test', 'val']:
            raise ValueError('Invalid split for mode "gtFine"! Please use split="train", split="test"'
                             ' or split="val"')
        elif mode == 'gtCoarse' and split not in ['train', 'train_extra', 'val']:
            raise ValueError('Invalid split for mode "gtCoarse"! Please use split="train", split="train_extra"'
                             ' or split="val"')

        if target_type not in ['instance', 'semantic', 'polygon', 'color']:
            raise ValueError('Invalid value for "target_type"! Please use target_type="instance",'
                             ' target_type="semantic", target_type="polygon" or target_type="color"')

        if not os.path.isdir(self.images_dir) or not os.path.isdir(self.targets_dir):
            raise RuntimeError('Dataset not found or incomplete. Please make sure all required folders for the'
                               ' specified "split" and "mode" are inside the "root" directory')

        for city in os.listdir(self.images_dir):
            img_dir = os.path.join(self.images_dir, city)
            target_dir = os.path.join(self.targets_dir, city)
            for file_name in os.listdir(img_dir):
                target_name = '{}_{}'.format(file_name.split('_leftImg8bit')[0],
                                             self._get_target_suffix(self.mode, self.target_type))

                self.images.append(os.path.join(img_dir, file_name))
                self.targets.append(os.path.join(target_dir, target_name))

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: (image, target) where target is a json object if target_type="polygon",
            otherwise the image segmentation.
        """

        image = Image.open(self.images[index]).convert('RGB')

        if self.target_type == 'polygon':
            target = self._load_json(self.targets[index])
        else:
            target = Image.open(self.targets[index])

        if self.transform:
            image = self.transform(image)

        if self.target_transform:
            target = self.target_transform(target)

        return image, target

    def __len__(self):
        return len(self.images)

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        fmt_str += '    Split: {}\n'.format(self.split)
        fmt_str += '    Mode: {}\n'.format(self.mode)
        fmt_str += '    Type: {}\n'.format(self.target_type)
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str

    def _load_json(self, path):
        with open(path, 'r') as file:
            data = json.load(file)
        return data

    def _get_target_suffix(self, mode, target_type):
        if target_type == 'instance':
            return '{}_instanceIds.png'.format(mode)
        elif target_type == 'semantic':
            return '{}_labelIds.png'.format(mode)
        elif target_type == 'color':
            return '{}_color.png'.format(mode)
        else:
            return '{}_polygons.json'.format(mode)