video.py 14.4 KB
Newer Older
1
import gc
2
import math
3
import os
4
import re
5
import warnings
6
from fractions import Fraction
7
from typing import Any, Dict, List, Optional, Tuple, Union
8

9
10
import numpy as np
import torch
Francisco Massa's avatar
Francisco Massa committed
11

12
from . import _video_opt
Francisco Massa's avatar
Francisco Massa committed
13
14


15
16
try:
    import av
17

18
    av.logging.set_level(av.logging.ERROR)
19
20
21
    if not hasattr(av.video.frame.VideoFrame, "pict_type"):
        av = ImportError(
            """\
22
23
24
25
26
Your version of PyAV is too old for the necessary video operations in torchvision.
If you are on Python 3.5, you will have to build from source (the conda-forge
packages are not up-to-date).  See
https://github.com/mikeboers/PyAV#installation for instructions on how to
install PyAV on your system.
27
28
"""
        )
29
except ImportError:
30
31
    av = ImportError(
        """\
32
33
34
PyAV is not installed, and is necessary for the video operations in torchvision.
See https://github.com/mikeboers/PyAV#installation for instructions on how to
install PyAV on your system.
35
36
"""
    )
37
38


39
def _check_av_available() -> None:
40
41
42
43
    if isinstance(av, Exception):
        raise av


44
def _av_available() -> bool:
45
46
47
    return not isinstance(av, Exception)


48
49
# PyAV has some reference cycles
_CALLED_TIMES = 0
50
_GC_COLLECTION_INTERVAL = 10
51
52


53
54
55
56
57
58
def write_video(
    filename: str,
    video_array: torch.Tensor,
    fps: float,
    video_codec: str = "libx264",
    options: Optional[Dict[str, Any]] = None,
59
60
61
62
    audio_array: Optional[torch.Tensor] = None,
    audio_fps: Optional[float] = None,
    audio_codec: Optional[str] = None,
    audio_options: Optional[Dict[str, Any]] = None,
63
) -> None:
64
65
66
    """
    Writes a 4d tensor in [T, H, W, C] format in a video file

67
68
69
70
71
72
73
74
75
76
77
78
    Args:
        filename (str): path where the video will be saved
        video_array (Tensor[T, H, W, C]): tensor containing the individual frames,
            as a uint8 tensor in [T, H, W, C] format
        fps (Number): video frames per second
        video_codec (str): the name of the video codec, i.e. "libx264", "h264", etc.
        options (Dict): dictionary containing options to be passed into the PyAV video stream
        audio_array (Tensor[C, N]): tensor containing the audio, where C is the number of channels
            and N is the number of samples
        audio_fps (Number): audio sample rate, typically 44100 or 48000
        audio_codec (str): the name of the audio codec, i.e. "mp3", "aac", etc.
        audio_options (Dict): dictionary containing options to be passed into the PyAV audio stream
79
80
81
82
    """
    _check_av_available()
    video_array = torch.as_tensor(video_array, dtype=torch.uint8).numpy()

83
84
85
86
87
    # PyAV does not support floating point numbers with decimal point
    # and will throw OverflowException in case this is not the case
    if isinstance(fps, float):
        fps = np.round(fps)

88
89
90
91
92
93
94
    with av.open(filename, mode="w") as container:
        stream = container.add_stream(video_codec, rate=fps)
        stream.width = video_array.shape[2]
        stream.height = video_array.shape[1]
        stream.pix_fmt = "yuv420p" if video_codec != "libx264rgb" else "rgb24"
        stream.options = options or {}

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        if audio_array is not None:
            audio_format_dtypes = {
                'dbl': '<f8',
                'dblp': '<f8',
                'flt': '<f4',
                'fltp': '<f4',
                's16': '<i2',
                's16p': '<i2',
                's32': '<i4',
                's32p': '<i4',
                'u8': 'u1',
                'u8p': 'u1',
            }
            a_stream = container.add_stream(audio_codec, rate=audio_fps)
            a_stream.options = audio_options or {}

            num_channels = audio_array.shape[0]
            audio_layout = "stereo" if num_channels > 1 else "mono"
            audio_sample_fmt = container.streams.audio[0].format.name

            format_dtype = np.dtype(audio_format_dtypes[audio_sample_fmt])
            audio_array = torch.as_tensor(audio_array).numpy().astype(format_dtype)

            frame = av.AudioFrame.from_ndarray(
                audio_array, format=audio_sample_fmt, layout=audio_layout
            )

            frame.sample_rate = audio_fps

            for packet in a_stream.encode(frame):
                container.mux(packet)

            for packet in a_stream.encode():
                container.mux(packet)

130
131
132
133
134
135
136
137
        for img in video_array:
            frame = av.VideoFrame.from_ndarray(img, format="rgb24")
            frame.pict_type = "NONE"
            for packet in stream.encode(frame):
                container.mux(packet)

        # Flush stream
        for packet in stream.encode():
138
139
140
            container.mux(packet)


141
def _read_from_stream(
142
143
144
145
146
147
148
    container: "av.container.Container",
    start_offset: float,
    end_offset: float,
    pts_unit: str,
    stream: "av.stream.Stream",
    stream_name: Dict[str, Optional[Union[int, Tuple[int, ...], List[int]]]],
) -> List["av.frame.Frame"]:
149
150
151
152
153
    global _CALLED_TIMES, _GC_COLLECTION_INTERVAL
    _CALLED_TIMES += 1
    if _CALLED_TIMES % _GC_COLLECTION_INTERVAL == _GC_COLLECTION_INTERVAL - 1:
        gc.collect()

154
    if pts_unit == "sec":
155
156
157
158
        start_offset = int(math.floor(start_offset * (1 / stream.time_base)))
        if end_offset != float("inf"):
            end_offset = int(math.ceil(end_offset * (1 / stream.time_base)))
    else:
159
160
161
162
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
163

164
    frames = {}
165
    should_buffer = True
166
167
    max_buffer_size = 5
    if stream.type == "video":
168
        # DivX-style packed B-frames can have out-of-order pts (2 frames in a single pkt)
169
170
        # so need to buffer some extra frames to sort everything
        # properly
171
172
173
174
175
176
177
178
179
180
181
182
        extradata = stream.codec_context.extradata
        # overly complicated way of finding if `divx_packed` is set, following
        # https://github.com/FFmpeg/FFmpeg/commit/d5a21172283572af587b3d939eba0091484d3263
        if extradata and b"DivX" in extradata:
            # can't use regex directly because of some weird characters sometimes...
            pos = extradata.find(b"DivX")
            d = extradata[pos:]
            o = re.search(br"DivX(\d+)Build(\d+)(\w)", d)
            if o is None:
                o = re.search(br"DivX(\d+)b(\d+)(\w)", d)
            if o is not None:
                should_buffer = o.group(3) == b"p"
183
    seek_offset = start_offset
184
185
    # some files don't seek to the right location, so better be safe here
    seek_offset = max(seek_offset - 1, 0)
186
187
188
189
    if should_buffer:
        # FIXME this is kind of a hack, but we will jump to the previous keyframe
        # so this will be safe
        seek_offset = max(seek_offset - max_buffer_size, 0)
190
191
192
193
    try:
        # TODO check if stream needs to always be the video stream here or not
        container.seek(seek_offset, any_frame=False, backward=True, stream=stream)
    except av.AVError:
194
195
        # TODO add some warnings in this case
        # print("Corrupted file?", container.name)
196
        return []
197
    buffer_count = 0
198
    try:
199
        for _idx, frame in enumerate(container.decode(**stream_name)):
200
201
202
203
204
205
206
207
208
            frames[frame.pts] = frame
            if frame.pts >= end_offset:
                if should_buffer and buffer_count < max_buffer_size:
                    buffer_count += 1
                    continue
                break
    except av.AVError:
        # TODO add a warning
        pass
209
    # ensure that the results are sorted wrt the pts
210
211
212
    result = [
        frames[i] for i in sorted(frames) if start_offset <= frames[i].pts <= end_offset
    ]
213
    if len(frames) > 0 and start_offset > 0 and start_offset not in frames:
214
215
216
        # if there is no frame that exactly matches the pts of start_offset
        # add the last frame smaller than start_offset, to guarantee that
        # we will have all the necessary data. This is most useful for audio
217
218
219
220
        preceding_frames = [i for i in frames if i < start_offset]
        if len(preceding_frames) > 0:
            first_frame_pts = max(preceding_frames)
            result.insert(0, frames[first_frame_pts])
221
    return result
222
223


224
225
226
def _align_audio_frames(
    aframes: torch.Tensor, audio_frames: List["av.frame.Frame"], ref_start: int, ref_end: float
) -> torch.Tensor:
227
228
229
230
231
232
233
234
235
236
237
238
    start, end = audio_frames[0].pts, audio_frames[-1].pts
    total_aframes = aframes.shape[1]
    step_per_aframe = (end - start + 1) / total_aframes
    s_idx = 0
    e_idx = total_aframes
    if start < ref_start:
        s_idx = int((ref_start - start) / step_per_aframe)
    if end > ref_end:
        e_idx = int((ref_end - end) / step_per_aframe)
    return aframes[:, s_idx:e_idx]


239
def read_video(
240
241
242
243
    filename: str,
    start_pts: Union[float, Fraction] = 0,
    end_pts: Optional[Union[float, Fraction]] = None,
    pts_unit: str = "pts",
244
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
245
246
247
248
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

249
250
251
252
253
254
255
256
257
258
259
    Args:
        filename (str): path to the video file
        start_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
            The start presentation time of the video
        end_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
            The end presentation time
        pts_unit (str, optional): unit in which start_pts and end_pts values will be interpreted,
            either 'pts' or 'sec'. Defaults to 'pts'.

    Returns:
        vframes (Tensor[T, H, W, C]): the `T` video frames
260
261
        aframes (Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points
        info (Dict): metadata for the video and audio. Can contain the fields video_fps (float) and audio_fps (int)
262
    """
Francisco Massa's avatar
Francisco Massa committed
263
264

    from torchvision import get_video_backend
265

266
267
268
    if not os.path.exists(filename):
        raise RuntimeError(f'File not found: {filename}')

Francisco Massa's avatar
Francisco Massa committed
269
270
271
    if get_video_backend() != "pyav":
        return _video_opt._read_video(filename, start_pts, end_pts, pts_unit)

272
273
274
275
276
277
    _check_av_available()

    if end_pts is None:
        end_pts = float("inf")

    if end_pts < start_pts:
278
279
280
281
        raise ValueError(
            "end_pts should be larger than start_pts, got "
            "start_pts={} and end_pts={}".format(start_pts, end_pts)
        )
282
283
284
285
286

    info = {}
    video_frames = []
    audio_frames = []

287
    try:
288
        with av.open(filename, metadata_errors="ignore") as container:
289
290
291
292
293
294
295
296
            time_base = _video_opt.default_timebase
            if container.streams.video:
                time_base = container.streams.video[0].time_base
            elif container.streams.audio:
                time_base = container.streams.audio[0].time_base
            # video_timebase is the default time_base
            start_pts_sec, end_pts_sec, pts_unit = _video_opt._convert_to_sec(
                start_pts, end_pts, pts_unit, time_base)
297
298
299
            if container.streams.video:
                video_frames = _read_from_stream(
                    container,
300
301
                    start_pts_sec,
                    end_pts_sec,
302
303
304
305
306
307
308
309
310
311
312
313
                    pts_unit,
                    container.streams.video[0],
                    {"video": 0},
                )
                video_fps = container.streams.video[0].average_rate
                # guard against potentially corrupted files
                if video_fps is not None:
                    info["video_fps"] = float(video_fps)

            if container.streams.audio:
                audio_frames = _read_from_stream(
                    container,
314
315
                    start_pts_sec,
                    end_pts_sec,
316
317
318
319
320
321
                    pts_unit,
                    container.streams.audio[0],
                    {"audio": 0},
                )
                info["audio_fps"] = container.streams.audio[0].rate

322
323
324
    except av.AVError:
        # TODO raise a warning?
        pass
325

326
327
    vframes_list = [frame.to_rgb().to_ndarray() for frame in video_frames]
    aframes_list = [frame.to_ndarray() for frame in audio_frames]
328

329
330
    if vframes_list:
        vframes = torch.as_tensor(np.stack(vframes_list))
331
332
333
    else:
        vframes = torch.empty((0, 1, 1, 3), dtype=torch.uint8)

334
335
    if aframes_list:
        aframes = np.concatenate(aframes_list, 1)
336
337
338
339
340
341
342
343
        aframes = torch.as_tensor(aframes)
        aframes = _align_audio_frames(aframes, audio_frames, start_pts, end_pts)
    else:
        aframes = torch.empty((1, 0), dtype=torch.float32)

    return vframes, aframes, info


344
def _can_read_timestamps_from_packets(container: "av.container.Container") -> bool:
345
346
347
348
349
350
351
352
    extradata = container.streams[0].codec_context.extradata
    if extradata is None:
        return False
    if b"Lavc" in extradata:
        return True
    return False


353
def _decode_video_timestamps(container: "av.container.Container") -> List[int]:
354
355
356
357
358
359
360
    if _can_read_timestamps_from_packets(container):
        # fast path
        return [x.pts for x in container.demux(video=0) if x.pts is not None]
    else:
        return [x.pts for x in container.decode(video=0) if x.pts is not None]


361
def read_video_timestamps(filename: str, pts_unit: str = "pts") -> Tuple[List[int], Optional[float]]:
362
363
364
365
366
    """
    List the video frames timestamps.

    Note that the function decodes the whole video frame-by-frame.

367
368
369
370
371
372
373
374
375
    Args:
        filename (str): path to the video file
        pts_unit (str, optional): unit in which timestamp values will be returned
            either 'pts' or 'sec'. Defaults to 'pts'.

    Returns:
        pts (List[int] if pts_unit = 'pts', List[Fraction] if pts_unit = 'sec'):
            presentation timestamps for each one of the frames in the video.
        video_fps (float, optional): the frame rate for the video
376
377

    """
Francisco Massa's avatar
Francisco Massa committed
378
    from torchvision import get_video_backend
379

Francisco Massa's avatar
Francisco Massa committed
380
381
382
    if get_video_backend() != "pyav":
        return _video_opt._read_video_timestamps(filename, pts_unit)

383
    _check_av_available()
384

385
    video_fps = None
386
    pts = []
387
388

    try:
389
390
391
392
393
394
395
396
397
        with av.open(filename, metadata_errors="ignore") as container:
            if container.streams.video:
                video_stream = container.streams.video[0]
                video_time_base = video_stream.time_base
                try:
                    pts = _decode_video_timestamps(container)
                except av.AVError:
                    warnings.warn(f"Failed decoding frames for file {filename}")
                video_fps = float(video_stream.average_rate)
398
399
400
    except av.AVError as e:
        msg = f"Failed to open container for {filename}; Caught error: {e}"
        warnings.warn(msg, RuntimeWarning)
401

402
    pts.sort()
403

404
    if pts_unit == "sec":
405
406
407
        pts = [x * video_time_base for x in pts]

    return pts, video_fps