test_load_op.py 8.73 KB
Newer Older
huteng.ht's avatar
huteng.ht committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
'''
Copyright (c) 2024 Beijing Volcano Engine Technology Ltd.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''

17
import base64
huteng.ht's avatar
huteng.ht committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import os
import tempfile
import unittest
from copy import deepcopy
from unittest import TestCase

import torch

import veturboio


class TestLoad(TestCase):
    @classmethod
    def setUpClass(cls):
32
33
34
35
36
37
38
39
40
41
42
43
44
        ENV_KMS_HOST = 'VETURBOIO_KMS_HOST'
        ENV_KMS_REGION = 'VETURBOIO_KMS_REGION'
        ENV_KMS_AK = 'VETURBOIO_KMS_ACCESS_KEY'
        ENV_KMS_SK = 'VETURBOIO_KMS_SECRET_KEY'
        ENV_KMS_KEYRING = 'VETURBOIO_KMS_KEYRING_NAME'
        ENV_KMS_KEY = 'VETURBOIO_KMS_KEY_NAME'
        os.environ[ENV_KMS_HOST] = 'open.volcengineapi.com'
        os.environ[ENV_KMS_REGION] = 'cn-beijing'
        os.environ[ENV_KMS_AK] = os.environ['CI_VENDOR_AK']
        os.environ[ENV_KMS_SK] = os.environ['CI_VENDOR_SK']
        os.environ[ENV_KMS_KEYRING] = 'datapipe_keyring'
        os.environ[ENV_KMS_KEY] = 'datapipe_key_ml_maas'

huteng.ht's avatar
huteng.ht committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        cls.tempdir = tempfile.TemporaryDirectory()

        cls.tensors_0 = {
            "weight1": torch.randn(2000, 10),
            "weight2": torch.randn(2000, 10),
        }

        cls.tensors_1 = {
            "weight1": torch.randn(2000, 10),
            "weight2": torch.randn(2000, 10),
            "weight3": torch.randn(2000, 10),
        }

        cls.filepath_0 = os.path.join(cls.tempdir.name, "model_0.safetensors")
        cls.filepath_1 = os.path.join(cls.tempdir.name, "model_1.safetensors")
        veturboio.save_file(cls.tensors_0, cls.filepath_0)
        veturboio.save_file(cls.tensors_1, cls.filepath_1)

        cls.pt_filepath = os.path.join(cls.tempdir.name, "model.pt")
        torch.save(cls.tensors_0, cls.pt_filepath)

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        # cipher
        os.environ["VETURBOIO_KEY"] = base64.b64encode(b"abcdefgh12345678").decode("ascii")
        os.environ["VETURBOIO_IV"] = base64.b64encode(b"1234567887654321").decode("ascii")

        cls.filepath_0_enc = os.path.join(cls.tempdir.name, "model_0_enc.safetensors")
        cls.filepath_1_enc = os.path.join(cls.tempdir.name, "model_1_enc.safetensors")
        veturboio.save_file(cls.tensors_0, cls.filepath_0_enc, use_cipher=True)
        veturboio.save_file(cls.tensors_1, cls.filepath_1_enc, use_cipher=True)

        cls.pt_filepath_enc = os.path.join(cls.tempdir.name, "model_enc.pt")
        veturboio.save_pt(cls.tensors_0, cls.pt_filepath_enc, use_cipher=True)

        # cipher with header
        os.environ["VETURBOIO_CIPHER_HEADER"] = "1"
        cls.filepath_0_enc_h = os.path.join(cls.tempdir.name, "model_0_enc_h.safetensors")
        veturboio.save_file(cls.tensors_0, cls.filepath_0_enc_h, use_cipher=True)

        cls.pt_filepath_enc_h = os.path.join(cls.tempdir.name, "model_enc_h.pt")
        veturboio.save_pt(cls.tensors_0, cls.pt_filepath_enc_h, use_cipher=True)

huteng.ht's avatar
huteng.ht committed
86
87
88
89
90
91
92
93
94
95
96
        if torch.cuda.is_available():
            cls.cuda_tensors_0 = deepcopy(cls.tensors_0)
            cls.cuda_tensors_1 = deepcopy(cls.tensors_1)

            for key in cls.cuda_tensors_0.keys():
                cls.cuda_tensors_0[key] = cls.cuda_tensors_0[key].cuda()
            for key in cls.cuda_tensors_1.keys():
                cls.cuda_tensors_1[key] = cls.cuda_tensors_1[key].cuda()

    @classmethod
    def tearDownClass(cls):
97
98
        # cls.tempdir.cleanup()
        pass
huteng.ht's avatar
huteng.ht committed
99

100
101
102
103
    def _run_pipeline(self, tensors, filepath, map_location, use_cipher, enable_fast_mode=True):
        loaded_tensors = veturboio.load(
            filepath, map_location=map_location, use_cipher=use_cipher, enable_fast_mode=enable_fast_mode
        )
huteng.ht's avatar
huteng.ht committed
104
105
106
107
108
        for key in tensors.keys():
            self.assertTrue(torch.allclose(tensors[key], loaded_tensors[key]))
        return loaded_tensors

    def test_pipeline_cpu(self):
109
110
111
112
        self._run_pipeline(self.tensors_0, self.filepath_0, "cpu", use_cipher=False)
        self._run_pipeline(self.tensors_0, self.filepath_0_enc, "cpu", use_cipher=True)
        self._run_pipeline(self.tensors_0, self.filepath_0, "cpu", use_cipher=False, enable_fast_mode=False)
        self._run_pipeline(self.tensors_0, self.filepath_0_enc, "cpu", use_cipher=True, enable_fast_mode=False)
huteng.ht's avatar
huteng.ht committed
113
114
115

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_pipeline_cuda(self):
116
117
118
119
        self._run_pipeline(self.cuda_tensors_0, self.filepath_0, "cuda:0", use_cipher=False)
        self._run_pipeline(self.cuda_tensors_0, self.filepath_0_enc, "cuda:0", use_cipher=True)
        self._run_pipeline(self.cuda_tensors_0, self.filepath_0, "cuda:0", use_cipher=False, enable_fast_mode=False)
        self._run_pipeline(self.cuda_tensors_0, self.filepath_0_enc, "cuda:0", use_cipher=True, enable_fast_mode=False)
huteng.ht's avatar
huteng.ht committed
120
121

    def test_read_multi_state_dict_cpu(self):
122
123
        load_tensor_0 = self._run_pipeline(self.tensors_0, self.filepath_0, "cpu", use_cipher=False)
        load_tensor_1 = self._run_pipeline(self.tensors_1, self.filepath_1, "cpu", use_cipher=False)
huteng.ht's avatar
huteng.ht committed
124
125
126
127

        self.assertEqual(len(load_tensor_0), 2)
        self.assertEqual(len(load_tensor_1), 3)

128
129
130
131
132
133
        load_tensor_0_enc = self._run_pipeline(self.tensors_0, self.filepath_0_enc, "cpu", use_cipher=True)
        load_tensor_1_enc = self._run_pipeline(self.tensors_1, self.filepath_1_enc, "cpu", use_cipher=True)

        self.assertEqual(len(load_tensor_0_enc), 2)
        self.assertEqual(len(load_tensor_1_enc), 3)

huteng.ht's avatar
huteng.ht committed
134
135
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_read_multi_state_dict_cuda(self):
136
137
        load_tensor_0 = self._run_pipeline(self.cuda_tensors_0, self.filepath_0, "cuda:0", use_cipher=False)
        load_tensor_1 = self._run_pipeline(self.cuda_tensors_1, self.filepath_1, "cuda:0", use_cipher=False)
huteng.ht's avatar
huteng.ht committed
138
139
140
141

        self.assertEqual(len(load_tensor_0), 2)
        self.assertEqual(len(load_tensor_1), 3)

142
143
144
145
146
147
        load_tensor_0_enc = self._run_pipeline(self.cuda_tensors_0, self.filepath_0_enc, "cuda:0", use_cipher=True)
        load_tensor_1_enc = self._run_pipeline(self.cuda_tensors_1, self.filepath_1_enc, "cuda:0", use_cipher=True)

        self.assertEqual(len(load_tensor_0_enc), 2)
        self.assertEqual(len(load_tensor_1_enc), 3)

huteng.ht's avatar
huteng.ht committed
148
    def test_load_pt_cpu(self):
149
        loaded_tensors = veturboio.load(self.pt_filepath, map_location="cpu", use_cipher=False)
huteng.ht's avatar
huteng.ht committed
150
151
152
        for key in self.tensors_0.keys():
            self.assertTrue(torch.allclose(self.tensors_0[key], loaded_tensors[key]))

153
154
155
156
        loaded_tensors_enc = veturboio.load(self.pt_filepath_enc, map_location="cpu", use_cipher=True)
        for key in self.tensors_0.keys():
            self.assertTrue(torch.allclose(self.tensors_0[key], loaded_tensors_enc[key]))

huteng.ht's avatar
huteng.ht committed
157
158
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_load_pt_cuda(self):
159
        loaded_tensors = veturboio.load(self.pt_filepath, map_location="cuda:0", use_cipher=False)
huteng.ht's avatar
huteng.ht committed
160
161
        for key in self.tensors_0.keys():
            self.assertTrue(torch.allclose(self.cuda_tensors_0[key], loaded_tensors[key]))
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

        loaded_tensors_enc = veturboio.load(self.pt_filepath_enc, map_location="cuda:0", use_cipher=True)
        for key in self.tensors_0.keys():
            self.assertTrue(torch.allclose(self.cuda_tensors_0[key], loaded_tensors_enc[key]))

    def test_load_cipher_header_cpu(self):
        os.environ["VETURBOIO_CIPHER_HEADER"] = "1"
        self._run_pipeline(self.tensors_0, self.filepath_0_enc_h, "cpu", use_cipher=True)
        self._run_pipeline(self.tensors_0, self.pt_filepath_enc_h, "cpu", use_cipher=True)
        self._run_pipeline(self.tensors_0, self.filepath_0_enc_h, "cpu", use_cipher=True, enable_fast_mode=False)
        self._run_pipeline(self.tensors_0, self.pt_filepath_enc_h, "cpu", use_cipher=True, enable_fast_mode=False)
        del os.environ["VETURBOIO_CIPHER_HEADER"]

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_load_cipher_header_cuda(self):
        os.environ["VETURBOIO_CIPHER_HEADER"] = "1"
        self._run_pipeline(self.cuda_tensors_0, self.filepath_0_enc_h, "cuda:0", use_cipher=True)
        self._run_pipeline(self.cuda_tensors_0, self.pt_filepath_enc_h, "cuda:0", use_cipher=True)
        self._run_pipeline(
            self.cuda_tensors_0, self.filepath_0_enc_h, "cuda:0", use_cipher=True, enable_fast_mode=False
        )
        self._run_pipeline(
            self.cuda_tensors_0, self.pt_filepath_enc_h, "cuda:0", use_cipher=True, enable_fast_mode=False
        )
        del os.environ["VETURBOIO_CIPHER_HEADER"]