Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
f9663a7b
Unverified
Commit
f9663a7b
authored
Oct 07, 2021
by
moto
Committed by
GitHub
Oct 07, 2021
Browse files
Add license to pre-trained model doc (#1836)
parent
33a655fd
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
89 additions
and
65 deletions
+89
-65
torchaudio/models/wav2vec2/pretrained.py
torchaudio/models/wav2vec2/pretrained.py
+89
-65
No files found.
torchaudio/models/wav2vec2/pretrained.py
View file @
f9663a7b
...
@@ -159,9 +159,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -159,9 +159,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`].
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_BASE_10M
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_BASE_10M
=
Wav2Vec2PretrainedModelBundle
(
_path
=
'wav2vec2_fairseq_base_ls960_asr_ll10m.pth'
,
_path
=
'wav2vec2_fairseq_base_ls960_asr_ll10m.pth'
,
...
@@ -200,10 +202,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -200,10 +202,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
fine-tuned for ASR on 10 minutes of transcribed audio from *Libri-Light* dataset
fine-tuned for ASR on 10 minutes of transcribed audio from *Libri-Light* dataset
[:footcite:`librilight`] ("train-10min" subset).
[:footcite:`librilight`] ("train-10min" subset).
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_BASE_100H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_BASE_100H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_base_ls960_asr_ls100.pth'
,
'wav2vec2_fairseq_base_ls960_asr_ls100.pth'
,
...
@@ -242,10 +245,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -242,10 +245,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
fine-tuned for ASR on 100 hours of transcribed audio from "train-clean-100" subset.
fine-tuned for ASR on 100 hours of transcribed audio from "train-clean-100" subset.
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_BASE_960H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_BASE_960H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_base_ls960_asr_ls960.pth'
,
'wav2vec2_fairseq_base_ls960_asr_ls960.pth'
,
...
@@ -283,10 +287,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -283,10 +287,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
fine-tuned for ASR on the same audio with the corresponding transcripts.
fine-tuned for ASR on the same audio with the corresponding transcripts.
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_LARGE
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_LARGE
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_ls960.pth'
,
'wav2vec2_fairseq_large_ls960.pth'
,
...
@@ -324,10 +329,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -324,10 +329,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_10M
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_10M
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_ls960_asr_ll10m.pth'
,
'wav2vec2_fairseq_large_ls960_asr_ll10m.pth'
,
...
@@ -366,10 +372,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -366,10 +372,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
fine-tuned for ASR on 10 minutes of transcribed audio from *Libri-Light* dataset
fine-tuned for ASR on 10 minutes of transcribed audio from *Libri-Light* dataset
[:footcite:`librilight`] ("train-10min" subset).
[:footcite:`librilight`] ("train-10min" subset).
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_100H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_100H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_ls960_asr_ls100.pth'
,
'wav2vec2_fairseq_large_ls960_asr_ls100.pth'
,
...
@@ -408,10 +415,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -408,10 +415,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
fine-tuned for ASR on 100 hours of transcribed audio from
fine-tuned for ASR on 100 hours of transcribed audio from
the same dataset ("train-clean-100" subset).
the same dataset ("train-clean-100" subset).
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_960H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_960H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_ls960_asr_ls960.pth'
,
'wav2vec2_fairseq_large_ls960_asr_ls960.pth'
,
...
@@ -449,10 +457,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -449,10 +457,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
fine-tuned for ASR on the same audio with the corresponding transcripts.
fine-tuned for ASR on the same audio with the corresponding transcripts.
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_LARGE_LV60K
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_LARGE_LV60K
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_lv60k.pth'
,
'wav2vec2_fairseq_large_lv60k.pth'
,
...
@@ -490,10 +499,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
...
@@ -490,10 +499,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
*Libri-Light* dataset [:footcite:`librilight`].
*Libri-Light* dataset [:footcite:`librilight`].
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_LV60K_10M
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_LV60K_10M
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_lv60k_asr_ll10m.pth'
,
'wav2vec2_fairseq_large_lv60k_asr_ll10m.pth'
,
...
@@ -532,10 +542,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
...
@@ -532,10 +542,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
fine-tuned for ASR on 10 minutes of transcribed audio from
fine-tuned for ASR on 10 minutes of transcribed audio from
the same dataset ("train-10min" subset).
the same dataset ("train-10min" subset).
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_LV60K_100H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_LV60K_100H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_lv60k_asr_ls100.pth'
,
'wav2vec2_fairseq_large_lv60k_asr_ls100.pth'
,
...
@@ -574,10 +585,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
...
@@ -574,10 +585,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
fine-tuned for ASR on 100 hours of transcribed audio from
fine-tuned for ASR on 100 hours of transcribed audio from
*LibriSpeech* dataset [:footcite:`7178964`] ("train-clean-100" subset).
*LibriSpeech* dataset [:footcite:`7178964`] ("train-clean-100" subset).
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_LV60K_960H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_LV60K_960H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_lv60k_asr_ls960.pth'
,
'wav2vec2_fairseq_large_lv60k_asr_ls960.pth'
,
...
@@ -617,10 +629,11 @@ fine-tuned for ASR on 960 hours of transcribed audio from
...
@@ -617,10 +629,11 @@ fine-tuned for ASR on 960 hours of transcribed audio from
*LibriSpeech* dataset [:footcite:`7178964`]
*LibriSpeech* dataset [:footcite:`7178964`]
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_XLSR53
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_XLSR53
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_xlsr53.pth'
,
'wav2vec2_fairseq_large_xlsr53.pth'
,
...
@@ -662,9 +675,10 @@ Not fine-tuned.
...
@@ -662,9 +675,10 @@ Not fine-tuned.
Originally published by the authors of
Originally published by the authors of
*Unsupervised Cross-lingual Representation Learning for Speech Recognition*
*Unsupervised Cross-lingual Representation Learning for Speech Recognition*
[:footcite:`conneau2020unsupervised`].
[:footcite:`conneau2020unsupervised`] under MIT License and redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
HUBERT_BASE
=
Wav2Vec2PretrainedModelBundle
(
HUBERT_BASE
=
Wav2Vec2PretrainedModelBundle
(
'hubert_fairseq_base_ls960.pth'
,
'hubert_fairseq_base_ls960.pth'
,
...
@@ -702,9 +716,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -702,9 +716,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`].
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
"""
# noqa: E501
HUBERT_LARGE
=
Wav2Vec2PretrainedModelBundle
(
HUBERT_LARGE
=
Wav2Vec2PretrainedModelBundle
(
'hubert_fairseq_large_ll60k.pth'
,
'hubert_fairseq_large_ll60k.pth'
,
...
@@ -742,9 +758,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
...
@@ -742,9 +758,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
*Libri-Light* dataset [:footcite:`librilight`].
*Libri-Light* dataset [:footcite:`librilight`].
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`].
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
"""
# noqa: E501
HUBERT_XLARGE
=
Wav2Vec2PretrainedModelBundle
(
HUBERT_XLARGE
=
Wav2Vec2PretrainedModelBundle
(
'hubert_fairseq_xlarge_ll60k.pth'
,
'hubert_fairseq_xlarge_ll60k.pth'
,
...
@@ -782,9 +800,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
...
@@ -782,9 +800,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
*Libri-Light* dataset [:footcite:`librilight`].
*Libri-Light* dataset [:footcite:`librilight`].
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`].
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
"""
# noqa: E501
HUBERT_ASR_LARGE
=
Wav2Vec2PretrainedModelBundle
(
HUBERT_ASR_LARGE
=
Wav2Vec2PretrainedModelBundle
(
'hubert_fairseq_large_ll60k_asr_ls960.pth'
,
'hubert_fairseq_large_ll60k_asr_ls960.pth'
,
...
@@ -824,9 +844,11 @@ fine-tuned for ASR on 960 hours of transcribed audio from
...
@@ -824,9 +844,11 @@ fine-tuned for ASR on 960 hours of transcribed audio from
*LibriSpeech* dataset [:footcite:`7178964`]
*LibriSpeech* dataset [:footcite:`7178964`]
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`].
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
"""
# noqa: E501
HUBERT_ASR_XLARGE
=
Wav2Vec2PretrainedModelBundle
(
HUBERT_ASR_XLARGE
=
Wav2Vec2PretrainedModelBundle
(
'hubert_fairseq_xlarge_ll60k_asr_ls960.pth'
,
'hubert_fairseq_xlarge_ll60k_asr_ls960.pth'
,
...
@@ -866,6 +888,8 @@ fine-tuned for ASR on 960 hours of transcribed audio from
...
@@ -866,6 +888,8 @@ fine-tuned for ASR on 960 hours of transcribed audio from
*LibriSpeech* dataset [:footcite:`7178964`]
*LibriSpeech* dataset [:footcite:`7178964`]
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`].
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
"""
# noqa: E501
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment