Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
bac32ec1
Unverified
Commit
bac32ec1
authored
Jun 24, 2021
by
Caroline Chen
Committed by
GitHub
Jun 24, 2021
Browse files
Add reduction parameter for RNNT loss (#1590)
parent
2376e9c9
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
17 additions
and
1 deletion
+17
-1
test/torchaudio_unittest/rnnt/utils.py
test/torchaudio_unittest/rnnt/utils.py
+1
-0
torchaudio/prototype/rnnt_loss.py
torchaudio/prototype/rnnt_loss.py
+16
-1
No files found.
test/torchaudio_unittest/rnnt/utils.py
View file @
bac32ec1
...
@@ -31,6 +31,7 @@ def compute_with_pytorch_transducer(data, reuse_logits_for_grads=False):
...
@@ -31,6 +31,7 @@ def compute_with_pytorch_transducer(data, reuse_logits_for_grads=False):
blank
=
data
[
"blank"
],
blank
=
data
[
"blank"
],
fused_log_softmax
=
data
.
get
(
"fused_log_softmax"
,
True
),
fused_log_softmax
=
data
.
get
(
"fused_log_softmax"
,
True
),
reuse_logits_for_grads
=
reuse_logits_for_grads
,
reuse_logits_for_grads
=
reuse_logits_for_grads
,
reduction
=
"none"
,
)(
)(
logits
=
data
[
"logits"
],
logits
=
data
[
"logits"
],
logit_lengths
=
data
[
"logit_lengths"
],
logit_lengths
=
data
[
"logit_lengths"
],
...
...
torchaudio/prototype/rnnt_loss.py
View file @
bac32ec1
...
@@ -16,6 +16,7 @@ def rnnt_loss(
...
@@ -16,6 +16,7 @@ def rnnt_loss(
clamp
:
float
=
-
1
,
clamp
:
float
=
-
1
,
fused_log_softmax
:
bool
=
True
,
fused_log_softmax
:
bool
=
True
,
reuse_logits_for_grads
:
bool
=
True
,
reuse_logits_for_grads
:
bool
=
True
,
reduction
:
str
=
"mean"
,
):
):
"""Compute the RNN Transducer loss from *Sequence Transduction with Recurrent Neural Networks*
"""Compute the RNN Transducer loss from *Sequence Transduction with Recurrent Neural Networks*
[:footcite:`graves2012sequence`].
[:footcite:`graves2012sequence`].
...
@@ -31,14 +32,18 @@ def rnnt_loss(
...
@@ -31,14 +32,18 @@ def rnnt_loss(
target_lengths (Tensor): Tensor of dimension (batch) containing lengths of targets for each sequence
target_lengths (Tensor): Tensor of dimension (batch) containing lengths of targets for each sequence
blank (int, opt): blank label (Default: ``-1``)
blank (int, opt): blank label (Default: ``-1``)
clamp (float): clamp for gradients (Default: ``-1``)
clamp (float): clamp for gradients (Default: ``-1``)
runtime_check (bool): whether to do sanity check during runtime. (Default: ``False``)
fused_log_softmax (bool): set to False if calling log_softmax outside loss (Default: ``True``)
fused_log_softmax (bool): set to False if calling log_softmax outside loss (Default: ``True``)
reuse_logits_for_grads (bool): whether to save memory by reusing logits memory for grads (Default: ``True``)
reuse_logits_for_grads (bool): whether to save memory by reusing logits memory for grads (Default: ``True``)
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. (Default: ``'mean'``)
Returns:
Returns:
Tensor: Loss with the reduction option applied. If ``reduction`` is ``'none'``, then size (batch),
Tensor: Loss with the reduction option applied. If ``reduction`` is ``'none'``, then size (batch),
otherwise scalar.
otherwise scalar.
"""
"""
if
reduction
not
in
[
'none'
,
'mean'
,
'sum'
]:
raise
ValueError
(
"reduction should be one of 'none', 'mean', or 'sum'"
)
if
not
fused_log_softmax
:
if
not
fused_log_softmax
:
logits
=
torch
.
nn
.
functional
.
log_softmax
(
logits
,
dim
=-
1
)
logits
=
torch
.
nn
.
functional
.
log_softmax
(
logits
,
dim
=-
1
)
reuse_logits_for_grads
=
(
reuse_logits_for_grads
=
(
...
@@ -58,6 +63,11 @@ def rnnt_loss(
...
@@ -58,6 +63,11 @@ def rnnt_loss(
fused_log_softmax
=
fused_log_softmax
,
fused_log_softmax
=
fused_log_softmax
,
reuse_logits_for_grads
=
reuse_logits_for_grads
,)
reuse_logits_for_grads
=
reuse_logits_for_grads
,)
if
reduction
==
'mean'
:
return
costs
.
mean
()
elif
reduction
==
'sum'
:
return
costs
.
sum
()
return
costs
return
costs
...
@@ -74,6 +84,8 @@ class RNNTLoss(torch.nn.Module):
...
@@ -74,6 +84,8 @@ class RNNTLoss(torch.nn.Module):
clamp (float): clamp for gradients (Default: ``-1``)
clamp (float): clamp for gradients (Default: ``-1``)
fused_log_softmax (bool): set to False if calling log_softmax outside loss (Default: ``True``)
fused_log_softmax (bool): set to False if calling log_softmax outside loss (Default: ``True``)
reuse_logits_for_grads (bool): whether to save memory by reusing logits memory for grads (Default: ``True``)
reuse_logits_for_grads (bool): whether to save memory by reusing logits memory for grads (Default: ``True``)
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. (Default: ``'mean'``)
"""
"""
def
__init__
(
def
__init__
(
...
@@ -82,12 +94,14 @@ class RNNTLoss(torch.nn.Module):
...
@@ -82,12 +94,14 @@ class RNNTLoss(torch.nn.Module):
clamp
:
float
=
-
1.
,
clamp
:
float
=
-
1.
,
fused_log_softmax
:
bool
=
True
,
fused_log_softmax
:
bool
=
True
,
reuse_logits_for_grads
:
bool
=
True
,
reuse_logits_for_grads
:
bool
=
True
,
reduction
:
str
=
"mean"
,
):
):
super
().
__init__
()
super
().
__init__
()
self
.
blank
=
blank
self
.
blank
=
blank
self
.
clamp
=
clamp
self
.
clamp
=
clamp
self
.
fused_log_softmax
=
fused_log_softmax
self
.
fused_log_softmax
=
fused_log_softmax
self
.
reuse_logits_for_grads
=
reuse_logits_for_grads
self
.
reuse_logits_for_grads
=
reuse_logits_for_grads
self
.
reduction
=
reduction
def
forward
(
def
forward
(
self
,
self
,
...
@@ -116,4 +130,5 @@ class RNNTLoss(torch.nn.Module):
...
@@ -116,4 +130,5 @@ class RNNTLoss(torch.nn.Module):
self
.
clamp
,
self
.
clamp
,
self
.
fused_log_softmax
,
self
.
fused_log_softmax
,
self
.
reuse_logits_for_grads
,
self
.
reuse_logits_for_grads
,
self
.
reduction
)
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment