Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
b6a0434a
Unverified
Commit
b6a0434a
authored
Sep 26, 2021
by
nateanl
Committed by
GitHub
Sep 26, 2021
Browse files
Add equations to MVDR docstring (#1789)
parent
78d41d57
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
31 additions
and
4 deletions
+31
-4
torchaudio/transforms.py
torchaudio/transforms.py
+31
-4
No files found.
torchaudio/transforms.py
View file @
b6a0434a
...
@@ -1560,16 +1560,43 @@ class PSD(torch.nn.Module):
...
@@ -1560,16 +1560,43 @@ class PSD(torch.nn.Module):
class
MVDR
(
torch
.
nn
.
Module
):
class
MVDR
(
torch
.
nn
.
Module
):
"""MVDR module that performs MVDR beamforming with Time-Frequency masks.
"""
Minimum Variance Distortionless Response (
MVDR
)
module that performs MVDR beamforming with Time-Frequency masks.
Based on https://github.com/espnet/espnet/blob/master/espnet2/enh/layers/beamformer.py
Based on https://github.com/espnet/espnet/blob/master/espnet2/enh/layers/beamformer.py
We provide three solutions of MVDR beamforming. One is based on *reference channel selection*
We provide three solutions of MVDR beamforming. One is based on *reference channel selection*
[:footcite:`souden2009optimal`].
[:footcite:`souden2009optimal`]
(``solution=ref_channel``)
.
The other two solutions are based on the steering vector. We apply either *eigenvalue decomposition*
.. math::
\\
textbf{w}_{
\\
text{MVDR}}(f) =
\
\\
frac{{{
\\
bf{
\\
Phi}_{
\\
textbf{NN}}^{-1}}(f){
\\
bf{
\\
Phi}_{
\\
textbf{SS}}}}(f)}
\
{
\\
text{Trace}({{{
\\
bf{
\\
Phi}_{
\\
textbf{NN}}^{-1}}(f)
\\
bf{
\\
Phi}_{
\\
textbf{SS}}}(f))}}
\\
bm{u}
where :math:`
\\
bf{
\\
Phi}_{
\\
textbf{SS}}` and :math:`
\\
bf{
\\
Phi}_{
\\
textbf{NN}}` are the covariance
\
matrices of speech and noise, respectively. :math:`
\\
bf{u}` is an one-hot vector to determine the
\
reference channel.
The other two solutions are based on the steering vector (``solution=stv_evd`` or ``solution=stv_power``).
.. math::
\\
textbf{w}_{
\\
text{MVDR}}(f) =
\
\\
frac{{{
\\
bf{
\\
Phi}_{
\\
textbf{NN}}^{-1}}(f){
\\
bm{v}}(f)}}
\
{{
\\
bm{v}^{
\\
mathsf{H}}}(f){
\\
bf{
\\
Phi}_{
\\
textbf{NN}}^{-1}}(f){
\\
bm{v}}(f)}
where :math:`
\\
bm{v}` is the acoustic transfer function or the steering vector.
\
:math:`.^{
\\
mathsf{H}}` denotes the Hermitian Conjugate operation.
We apply either *eigenvalue decomposition*
[:footcite:`higuchi2016robust`] or the *power method* [:footcite:`mises1929praktische`] to get the
[:footcite:`higuchi2016robust`] or the *power method* [:footcite:`mises1929praktische`] to get the
steering vector from the PSD matrices.
steering vector from the PSD matrix of speech.
After estimating the beamforming weight, the enhanced Short-time Fourier Transform (STFT) is obtained by
.. math::
\\
hat{
\\
bf{S}} = {
\\
bf{w}^
\\
mathsf{H}}{
\\
bf{Y}}, {
\\
bf{w}}
\\
in
\\
mathbb{C}^{M
\\
times F}
where :math:`
\\
bf{Y}` and :math:`
\\
hat{
\\
bf{S}}` are the STFT of the multi-channel noisy speech and
\
the single-channel enhanced speech, respectively.
For online streaming audio, we provide a *recursive method* [:footcite:`higuchi2017online`] to update the
For online streaming audio, we provide a *recursive method* [:footcite:`higuchi2017online`] to update the
PSD matrices of speech and noise, respectively.
PSD matrices of speech and noise, respectively.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment