Unverified Commit b3c2cfce authored by moto's avatar moto Committed by GitHub
Browse files

Port TTS tutorial (#1973)

parent b7625f2a
...@@ -47,6 +47,7 @@ The :mod:`torchaudio` package consists of I/O, popular datasets and common audio ...@@ -47,6 +47,7 @@ The :mod:`torchaudio` package consists of I/O, popular datasets and common audio
:caption: Tutorials :caption: Tutorials
auto_examples/wav2vec2/index auto_examples/wav2vec2/index
auto_examples/tts/index
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
......
...@@ -231,6 +231,10 @@ Tacotron2TTSBundle ...@@ -231,6 +231,10 @@ Tacotron2TTSBundle
.. automethod:: get_vocoder .. automethod:: get_vocoder
.. minigallery:: torchaudio.pipelines.Tacotron2TTSBundle
:add-heading: Examples using ``Tacotron2TTSBundle``
:heading-level: ~
Tacotron2TTSBundle - TextProcessor Tacotron2TTSBundle - TextProcessor
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
......
Text-to-Speech
==============
"""
Text-to-speech with torchaudio Tacotron2
========================================
**Author** `Yao-Yuan Yang <https://github.com/yangarbiter>`__,
`Moto Hira <moto@fb.com>`__
"""
######################################################################
# Overview
# --------
#
# This tutorial shows how to build text-to-speech pipeline, using the
# pretrained Tacotron2 in torchaudio.
#
# The text-to-speech pipeline goes as follows:
#
# 1. Text preprocessing
#
# First, the input text is encoded into a list of symbols. In this
# tutorial, we will use English characters and phonemes as the symbols.
#
# 2. Spectrogram generation
#
# From the encoded text, a spectrogram is generated. We use ``Tacotron2``
# model for this.
#
# 3. Time-domain conversion
#
# The last step is converting the spectrogram into the waveform. The
# process to generate speech from spectrogram is also called Vocoder.
# In this tutorial, three different vocoders are used,
# `WaveRNN <https://pytorch.org/audio/stable/models/wavernn.html>`__,
# `Griffin-Lim <https://pytorch.org/audio/stable/transforms.html#griffinlim>`__,
# and
# `Nvidia's WaveGlow <https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/>`__.
#
#
# The following figure illustrates the whole process.
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/tacotron2_tts_pipeline.png
#
# All the related components are bundled in :py:func:`torchaudio.pipelines.Tacotron2TTSBundle`,
# but this tutorial will also cover the process under the hood.
######################################################################
# Preparation
# -----------
#
# First, we install the necessary dependencies. In addition to
# ``torchaudio``, ``DeepPhonemizer`` is required to perform phoneme-based
# encoding.
#
# When running this example in notebook, install DeepPhonemizer
# !pip3 install deep_phonemizer
import torch
import torchaudio
import matplotlib
import matplotlib.pyplot as plt
import IPython
matplotlib.rcParams['figure.figsize'] = [16.0, 4.8]
torch.random.manual_seed(0)
device = "cuda" if torch.cuda.is_available() else "cpu"
print(torch.__version__)
print(torchaudio.__version__)
print(device)
######################################################################
# Text Processing
# ---------------
#
######################################################################
# Character-based encoding
# ~~~~~~~~~~~~~~~~~~~~~~~~
#
# In this section, we will go through how the character-based encoding
# works.
#
# Since the pre-trained Tacotron2 model expects specific set of symbol
# tables, the same functionalities available in ``torchaudio``. This
# section is more for the explanation of the basis of encoding.
#
# Firstly, we define the set of symbols. For example, we can use
# ``'_-!\'(),.:;? abcdefghijklmnopqrstuvwxyz'``. Then, we will map the
# each character of the input text into the index of the corresponding
# symbol in the table.
#
# The following is an example of such processing. In the example, symbols
# that are not in the table are ignored.
#
symbols = '_-!\'(),.:;? abcdefghijklmnopqrstuvwxyz'
look_up = {s: i for i, s in enumerate(symbols)}
symbols = set(symbols)
def text_to_sequence(text):
text = text.lower()
return [look_up[s] for s in text if s in symbols]
text = "Hello world! Text to speech!"
print(text_to_sequence(text))
######################################################################
# As mentioned in the above, the symbol table and indices must match
# what the pretrained Tacotron2 model expects. ``torchaudio`` provides the
# transform along with the pretrained model. For example, you can
# instantiate and use such transform as follow.
#
processor = torchaudio.pipelines.TACOTRON2_WAVERNN_CHAR_LJSPEECH.get_text_processor()
text = "Hello world! Text to speech!"
processed, lengths = processor(text)
print(processed)
print(lengths)
######################################################################
# The ``processor`` object takes either a text or list of texts as inputs.
# When a list of texts are provided, the returned ``lengths`` variable
# represents the valid length of each processed tokens in the output
# batch.
#
# The intermediate representation can be retrieved as follow.
#
print([processor.tokens[i] for i in processed[0, :lengths[0]]])
######################################################################
# Phoneme-based encoding
# ~~~~~~~~~~~~~~~~~~~~~~
#
# Phoneme-based encoding is similar to character-based encoding, but it
# uses a symbol table based on phonemes and a G2P (Grapheme-to-Phoneme)
# model.
#
# The detail of the G2P model is out of scope of this tutorial, we will
# just look at what the conversion looks like.
#
# Similar to the case of character-based encoding, the encoding process is
# expected to match what a pretrained Tacotron2 model is trained on.
# ``torchaudio`` has an interface to create the process.
#
# The following code illustrates how to make and use the process. Behind
# the scene, a G2P model is created using ``DeepPhonemizer`` package, and
# the pretrained weights published by the author of ``DeepPhonemizer`` is
# fetched.
#
bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
text = "Hello world! Text to speech!"
with torch.inference_mode():
processed, lengths = processor(text)
print(processed)
print(lengths)
######################################################################
# Notice that the encoded values are different from the example of
# character-based encoding.
#
# The intermediate representation looks like the following.
#
print([processor.tokens[i] for i in processed[0, :lengths[0]]])
######################################################################
# Spectrogram Generation
# ----------------------
#
# ``Tacotron2`` is the model we use to generate spectrogram from the
# encoded text. For the detail of the model, please refer to `the
# paper <https://arxiv.org/abs/1712.05884>`__.
#
# It is easy to instantiate a Tacotron2 model with pretrained weight,
# however, note that the input to Tacotron2 models need to be processed
# by the matching text processor.
#
# :py:func:`torchaudio.pipelines.Tacotron2TTSBundle` bundles the matching
# models and processors together so that it is easy to create the pipeline.
#
# For the available bundles, and its usage, please refer to :py:mod:`torchaudio.pipelines`.
#
bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
text = "Hello world! Text to speech!"
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device)
lengths = lengths.to(device)
spec, _, _ = tacotron2.infer(processed, lengths)
plt.imshow(spec[0].cpu().detach())
######################################################################
# Note that ``Tacotron2.infer`` method perfoms multinomial sampling,
# therefor, the process of generating the spectrogram incurs randomness.
#
fig, ax = plt.subplots(3, 1, figsize=(16, 4.3 * 3))
for i in range(3):
with torch.inference_mode():
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
print(spec[0].shape)
ax[i].imshow(spec[0].cpu().detach())
plt.show()
######################################################################
# Waveform Generation
# -------------------
#
# Once the spectrogram is generated, the last process is to recover the
# waveform from the spectrogram.
#
# ``torchaudio`` provides vocoders based on ``GriffinLim`` and
# ``WaveRNN``.
#
######################################################################
# WaveRNN
# ~~~~~~~
#
# Continuing from the previous section, we can instantiate the matching
# WaveRNN model from the same bundle.
#
bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
vocoder = bundle.get_vocoder().to(device)
text = "Hello world! Text to speech!"
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device)
lengths = lengths.to(device)
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(16, 9))
ax1.imshow(spec[0].cpu().detach())
ax2.plot(waveforms[0].cpu().detach())
torchaudio.save("output_wavernn.wav", waveforms[0:1].cpu(), sample_rate=vocoder.sample_rate)
IPython.display.display(IPython.display.Audio("output_wavernn.wav"))
######################################################################
# Griffin-Lim
# ~~~~~~~~~~~
#
# Using the Griffin-Lim vocoder is same as WaveRNN. You can instantiate
# the vocode object with ``get_vocoder`` method and pass the spectrogram.
#
bundle = torchaudio.pipelines.TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
vocoder = bundle.get_vocoder().to(device)
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device)
lengths = lengths.to(device)
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(16, 9))
ax1.imshow(spec[0].cpu().detach())
ax2.plot(waveforms[0].cpu().detach())
torchaudio.save("output_griffinlim.wav", waveforms[0:1].cpu(), sample_rate=vocoder.sample_rate)
IPython.display.display(IPython.display.Audio("output_griffinlim.wav"))
######################################################################
# Waveglow
# ~~~~~~~~
#
# Waveglow is a vocoder published by Nvidia. The pretrained weight is
# publishe on Torch Hub. One can instantiate the model using ``torch.hub``
# module.
#
# Workaround to load model mapped on GPU
# https://stackoverflow.com/a/61840832
waveglow = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_waveglow', model_math='fp32', pretrained=False)
checkpoint = torch.hub.load_state_dict_from_url('https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth', progress=False, map_location=device)
state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()}
waveglow.load_state_dict(state_dict)
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow = waveglow.to(device)
waveglow.eval()
with torch.no_grad():
waveforms = waveglow.infer(spec)
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(16, 9))
ax1.imshow(spec[0].cpu().detach())
ax2.plot(waveforms[0].cpu().detach())
torchaudio.save("output_waveglow.wav", waveforms[0:1].cpu(), sample_rate=22050)
IPython.display.display(IPython.display.Audio("output_waveglow.wav"))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment