Unverified Commit aa56d30c authored by Aziz's avatar Aziz Committed by GitHub
Browse files

Fix CommonVoice for French (#1126)

Resolves #1125 where dataset metadata does not contain an extension.
parent 9c484027
import os
import csv
import os
from pathlib import Path
from typing import Tuple, Dict
from torchaudio.datasets import COMMONVOICE
from torch import Tensor
from torchaudio_unittest.common_utils import (
TempDirMixin,
TorchaudioTestCase,
......@@ -11,47 +12,96 @@ from torchaudio_unittest.common_utils import (
normalize_wav,
)
from torchaudio.datasets import COMMONVOICE
class TestCommonVoice(TempDirMixin, TorchaudioTestCase):
backend = 'default'
_ORIGINAL_EXT_AUDIO = COMMONVOICE._ext_audio
_SAMPLE_RATE = 48000
_HEADERS = [u"client_ids", u"path", u"sentence", u"up_votes", u"down_votes", u"age", u"gender", u"accent"]
root_dir = None
data = []
_headers = [u"client_ids", u"path", u"sentence", u"up_votes", u"down_votes", u"age", u"gender", u"accent"]
def get_mock_dataset_en(root_dir) -> Tuple[Tensor, int, Dict[str, str]]:
mocked_data = []
# Note: extension is changed to wav for the sake of test
# Note: the first content is missing values for `age`, `gender` and `accent` as in the original data.
_train_csv_contents = [
_en_train_csv_contents = [
["9d16c5d980247861130e0480e2719f448be73d86a496c36d01a477cbdecd8cfd1399403d7a77bf458d211a70711b2da0845c",
"common_voice_en_18885784.wav",
"He was accorded a State funeral, and was buried in Drayton and Toowoomba Cemetery.", "2", "0", "", "", ""],
"common_voice_en_18885784.wav",
"He was accorded a State funeral, and was buried in Drayton and Toowoomba Cemetery.", "2", "0", "", "",
""],
["c82eb9291328620f06025a1f8112b909099e447e485e99236cb87df008650250e79fea5ca772061fb6a370830847b9c44d20",
"common_voice_en_556542.wav", "Once more into the breach", "2", "0", "thirties", "male", "us"],
"common_voice_en_556542.wav", "Once more into the breach", "2", "0", "thirties", "male", "us"],
["f74d880c5ad4c5917f314a604d3fc4805159d255796fb9f8defca35333ecc002bdf53dc463503c12674ea840b21b4a507b7c",
"common_voice_en_18607573.wav",
"Caddy, show Miss Clare and Miss Summerson their rooms.", "2", "0", "twenties", "male", "canada"],
"common_voice_en_18607573.wav",
"Caddy, show Miss Clare and Miss Summerson their rooms.", "2", "0", "twenties", "male", "canada"],
]
# Tsv file name difference does not mean different subset, testing as a whole dataset here
tsv_filename = os.path.join(root_dir, "train.tsv")
audio_base_path = os.path.join(root_dir, "clips")
os.makedirs(audio_base_path, exist_ok=True)
with open(tsv_filename, "w", newline='') as tsv:
writer = csv.writer(tsv, delimiter='\t')
writer.writerow(_HEADERS)
for i, content in enumerate(_en_train_csv_contents):
writer.writerow(content)
# Generate and store audio
audio_path = os.path.join(audio_base_path, content[1])
data = get_whitenoise(sample_rate=_SAMPLE_RATE, duration=1, n_channels=1, seed=i, dtype='float32')
save_wav(audio_path, data, _SAMPLE_RATE)
# Append data entry
mocked_data.append((normalize_wav(data), _SAMPLE_RATE, dict(zip(_HEADERS, content))))
return mocked_data
def get_mock_dataset_fr(root_dir) -> Tuple[Tensor, int, Dict[str, str]]:
mocked_data = []
_fr_train_csv_contents = [
[
"a2e8e1e1cc74d08c92a53d7b9ff84e077eb90410edd85b8882f16fd037cecfcb6a19413c6c63ce6458cfea9579878fa91cef"
"18343441c601cae0597a4b0d3144",
"89e67e7682b36786a0b4b4022c4d42090c86edd96c78c12d30088e62522b8fe466ea4912e6a1055dfb91b296a0743e0a2bbe"
"16cebac98ee5349e3e8262cb9329",
"Or sur ce point nous n’avons aucune réponse de votre part.", "2", "0", "twenties", "male", "france"],
[
"a2e8e1e1cc74d08c92a53d7b9ff84e077eb90410edd85b8882f16fd037cecfcb6a19413c6c63ce6458cfea9579878fa91cef18"
"343441c601cae0597a4b0d3144",
"87d71819a26179e93acfee149d0b21b7bf5e926e367d80b2b3792d45f46e04853a514945783ff764c1fc237b4eb0ee2b0a7a7"
"cbd395acbdfcfa9d76a6e199bbd",
"Monsieur de La Verpillière, laissez parler le ministre", "2", "0", "twenties", "male", "france"],
]
sample_rate = 48000
# Tsv file name difference does not mean different subset, testing as a whole dataset here
tsv_filename = os.path.join(root_dir, "train.tsv")
audio_base_path = os.path.join(root_dir, "clips")
os.makedirs(audio_base_path, exist_ok=True)
with open(tsv_filename, "w", newline='') as tsv:
writer = csv.writer(tsv, delimiter='\t')
writer.writerow(_HEADERS)
for i, content in enumerate(_fr_train_csv_contents):
content[2] = str(content[2].encode("utf-8"))
writer.writerow(content)
# Generate and store audio
audio_path = os.path.join(audio_base_path, content[1] + _ORIGINAL_EXT_AUDIO)
data = get_whitenoise(sample_rate=_SAMPLE_RATE, duration=1, n_channels=1, seed=i, dtype='float32')
save_wav(audio_path, data, _SAMPLE_RATE)
# Append data entry
mocked_data.append((normalize_wav(data), _SAMPLE_RATE, dict(zip(_HEADERS, content))))
return mocked_data
class TestCommonVoiceEN(TempDirMixin, TorchaudioTestCase):
backend = 'default'
root_dir = None
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
# Tsv file name difference does not mean different subset, testing as a whole dataset here
tsv_filename = os.path.join(cls.root_dir, "train.tsv")
audio_base_path = os.path.join(cls.root_dir, "clips")
os.makedirs(audio_base_path, exist_ok=True)
with open(tsv_filename, "w", newline='') as tsv:
writer = csv.writer(tsv, delimiter='\t')
writer.writerow(cls._headers)
for i, content in enumerate(cls._train_csv_contents):
writer.writerow(content)
# Generate and store audio
audio_path = os.path.join(audio_base_path, content[1])
data = get_whitenoise(sample_rate=cls.sample_rate, duration=1, n_channels=1, seed=i, dtype='float32')
save_wav(audio_path, data, cls.sample_rate)
# Append data entry
cls.data.append((normalize_wav(data), cls.sample_rate, dict(zip(cls._headers, content))))
cls.data = get_mock_dataset_en(cls.root_dir)
COMMONVOICE._ext_audio = ".wav"
@classmethod
def tearDownClass(cls):
COMMONVOICE._ext_audio = _ORIGINAL_EXT_AUDIO
def _test_commonvoice(self, dataset):
n_ite = 0
......@@ -59,7 +109,7 @@ class TestCommonVoice(TempDirMixin, TorchaudioTestCase):
expected_dictionary = self.data[i][2]
expected_data = self.data[i][0]
self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8)
assert sample_rate == TestCommonVoice.sample_rate
assert sample_rate == _SAMPLE_RATE
assert dictionary == expected_dictionary
n_ite += 1
assert n_ite == len(self.data)
......@@ -71,3 +121,33 @@ class TestCommonVoice(TempDirMixin, TorchaudioTestCase):
def test_commonvoice_path(self):
dataset = COMMONVOICE(Path(self.root_dir))
self._test_commonvoice(dataset)
class TestCommonVoiceFR(TempDirMixin, TorchaudioTestCase):
backend = 'default'
root_dir = None
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
cls.data = get_mock_dataset_fr(cls.root_dir)
COMMONVOICE._ext_audio = ".mp3"
@classmethod
def tearDownClass(cls):
COMMONVOICE._ext_audio = _ORIGINAL_EXT_AUDIO
def _test_commonvoice(self, dataset):
n_ite = 0
for i, (waveform, sample_rate, dictionary) in enumerate(dataset):
expected_dictionary = self.data[i][2]
expected_data = self.data[i][0]
self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8)
assert sample_rate == _SAMPLE_RATE
assert dictionary == expected_dictionary
n_ite += 1
assert n_ite == len(self.data)
def test_commonvoice_str(self):
dataset = COMMONVOICE(self.root_dir)
self._test_commonvoice(dataset)
from torchaudio.datasets import utils as dataset_utils
from torchaudio.datasets.commonvoice import COMMONVOICE
from torchaudio_unittest.common_utils import (
TempDirMixin,
TorchaudioTestCase,
get_asset_path,
)
from torchaudio.datasets import utils as dataset_utils
from torchaudio.datasets.commonvoice import COMMONVOICE
original_ext_audio = COMMONVOICE._ext_audio
class TestIterator(TorchaudioTestCase):
@classmethod
def setUpClass(cls):
COMMONVOICE._ext_audio = ".wav"
@classmethod
def tearDownClass(cls):
COMMONVOICE._ext_audio = original_ext_audio
backend = 'default'
path = get_asset_path('CommonVoice', 'cv-corpus-4-2019-12-10', 'tt')
......
import os
import csv
import os
import warnings
from pathlib import Path
from typing import List, Dict, Tuple, Union, Optional
import torchaudio
from torch import Tensor
from torch.utils.data import Dataset
import torchaudio
def load_commonvoice_item(line: List[str],
header: List[str],
path: str,
folder_audio: str) -> Tuple[Tensor, int, Dict[str, str]]:
folder_audio: str,
ext_audio: str) -> Tuple[Tensor, int, Dict[str, str]]:
# Each line as the following data:
# client_id, path, sentence, up_votes, down_votes, age, gender, accent
assert header[1] == "path"
fileid = line[1]
filename = os.path.join(path, folder_audio, fileid)
if not filename.endswith(ext_audio):
filename += ext_audio
waveform, sample_rate = torchaudio.load(filename)
dic = dict(zip(header, line))
......@@ -95,7 +97,7 @@ class COMMONVOICE(Dataset):
``up_votes``, ``down_votes``, ``age``, ``gender`` and ``accent``.
"""
line = self._walker[n]
return load_commonvoice_item(line, self._header, self._path, self._folder_audio)
return load_commonvoice_item(line, self._header, self._path, self._folder_audio, self._ext_audio)
def __len__(self) -> int:
return len(self._walker)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment