Unverified Commit a87b33db authored by Caroline Chen's avatar Caroline Chen Committed by GitHub
Browse files

Reformat resample docs (#1548)

parent c22d9bb8
......@@ -56,6 +56,11 @@ apply_codec
.. autofunction:: apply_codec
resample
--------
.. autofunction:: resample
:hidden:`Complex Utility`
~~~~~~~~~~~~~~~~~~~~~~~~~
......@@ -230,8 +235,3 @@ vad
---------------------------
.. autofunction:: spectral_centroid
:hidden:`resample`
---------------------------
.. autofunction:: resample
......@@ -1428,6 +1428,10 @@ def resample(
https://ccrma.stanford.edu/~jos/resample/Theory_Ideal_Bandlimited_Interpolation.html
Note:
``transforms.Resample`` precomputes and reuses the resampling kernel, so using it will result in
more efficient computation if resampling multiple waveforms with the same resampling parameters.
Args:
waveform (Tensor): The input signal of dimension (..., time)
orig_freq (float): The original frequency of the signal
......@@ -1442,9 +1446,6 @@ def resample(
Returns:
Tensor: The waveform at the new frequency of dimension (..., time).
Note: ``transforms.Resample`` precomputes and reuses the resampling kernel, so using it will result in
more efficient computation if resampling multiple waveforms with the same resampling parameters.
"""
assert orig_freq > 0.0 and new_freq > 0.0
......
......@@ -663,6 +663,12 @@ class MuLawDecoding(torch.nn.Module):
class Resample(torch.nn.Module):
r"""Resample a signal from one frequency to another. A resampling method can be given.
Note:
If resampling on waveforms of higher precision than float32, there may be a small loss of precision
because the kernel is cached once as float32. If high precision resampling is important for your application,
the functional form will retain higher precision, but run slower because it does not cache the kernel.
Alternatively, you could rewrite a transform that caches a higher precision kernel.
Args:
orig_freq (float, optional): The original frequency of the signal. (Default: ``16000``)
new_freq (float, optional): The desired frequency. (Default: ``16000``)
......@@ -673,11 +679,6 @@ class Resample(torch.nn.Module):
rolloff (float, optional): The roll-off frequency of the filter, as a fraction of the Nyquist.
Lower values reduce anti-aliasing, but also reduce some of the highest frequencies. (Default: ``0.99``)
beta (float or None): The shape parameter used for kaiser window.
Note: If resampling on waveforms of higher precision than float32, there may be a small loss of precision
because the kernel is cached once as float32. If high precision resampling is important for your application,
the functional form will retain higher precision, but run slower because it does not cache the kernel.
Alternatively, you could rewrite a transform that caches a higher precision kernel.
"""
def __init__(self,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment