Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
7763ed87
Unverified
Commit
7763ed87
authored
May 20, 2021
by
Caroline Chen
Committed by
GitHub
May 20, 2021
Browse files
Add F.resample torchscript test (#1516)
parent
a21b08e3
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
28 additions
and
6 deletions
+28
-6
test/torchaudio_unittest/functional/torchscript_consistency_impl.py
...audio_unittest/functional/torchscript_consistency_impl.py
+22
-0
torchaudio/functional/functional.py
torchaudio/functional/functional.py
+6
-6
No files found.
test/torchaudio_unittest/functional/torchscript_consistency_impl.py
View file @
7763ed87
...
@@ -591,6 +591,28 @@ class Functional(TempDirMixin, TestBaseMixin):
...
@@ -591,6 +591,28 @@ class Functional(TempDirMixin, TestBaseMixin):
tensor
=
common_utils
.
get_whitenoise
(
sample_rate
=
44100
)
tensor
=
common_utils
.
get_whitenoise
(
sample_rate
=
44100
)
self
.
_assert_consistency
(
func
,
tensor
)
self
.
_assert_consistency
(
func
,
tensor
)
def
test_resample_sinc
(
self
):
def
func
(
tensor
):
sr1
,
sr2
=
16000.
,
8000.
return
F
.
resample
(
tensor
,
sr1
,
sr2
,
resampling_method
=
"sinc_interpolation"
)
tensor
=
common_utils
.
get_whitenoise
(
sample_rate
=
16000
)
self
.
_assert_consistency
(
func
,
tensor
)
def
test_resample_kaiser
(
self
):
def
func
(
tensor
):
sr1
,
sr2
=
16000.
,
8000.
return
F
.
resample
(
tensor
,
sr1
,
sr2
,
resampling_method
=
"kaiser_window"
)
def
func_beta
(
tensor
):
sr1
,
sr2
=
16000.
,
8000.
beta
=
6.
return
F
.
resample
(
tensor
,
sr1
,
sr2
,
resampling_method
=
"kaiser_window"
,
beta
=
beta
)
tensor
=
common_utils
.
get_whitenoise
(
sample_rate
=
16000
)
self
.
_assert_consistency
(
func
,
tensor
)
self
.
_assert_consistency
(
func_beta
,
tensor
)
@
parameterized
.
expand
([(
True
,
),
(
False
,
)])
@
parameterized
.
expand
([(
True
,
),
(
False
,
)])
def
test_phase_vocoder
(
self
,
test_paseudo_complex
):
def
test_phase_vocoder
(
self
,
test_paseudo_complex
):
def
func
(
tensor
):
def
func
(
tensor
):
...
...
torchaudio/functional/functional.py
View file @
7763ed87
...
@@ -1328,9 +1328,6 @@ def _get_sinc_resample_kernel(
...
@@ -1328,9 +1328,6 @@ def _get_sinc_resample_kernel(
orig_freq
=
int
(
orig_freq
)
//
gcd
orig_freq
=
int
(
orig_freq
)
//
gcd
new_freq
=
int
(
new_freq
)
//
gcd
new_freq
=
int
(
new_freq
)
//
gcd
if
resampling_method
==
"kaiser_window"
and
beta
is
None
:
beta
=
14.769656459379492
assert
lowpass_filter_width
>
0
assert
lowpass_filter_width
>
0
kernels
=
[]
kernels
=
[]
base_freq
=
min
(
orig_freq
,
new_freq
)
base_freq
=
min
(
orig_freq
,
new_freq
)
...
@@ -1373,9 +1370,12 @@ def _get_sinc_resample_kernel(
...
@@ -1373,9 +1370,12 @@ def _get_sinc_resample_kernel(
# at specific positions, not over a regular grid.
# at specific positions, not over a regular grid.
if
resampling_method
==
"sinc_interpolation"
:
if
resampling_method
==
"sinc_interpolation"
:
window
=
torch
.
cos
(
t
*
math
.
pi
/
lowpass_filter_width
/
2
)
**
2
window
=
torch
.
cos
(
t
*
math
.
pi
/
lowpass_filter_width
/
2
)
**
2
elif
resampling_method
==
"kaiser_window"
:
else
:
beta
=
torch
.
tensor
(
beta
,
dtype
=
float
)
# kaiser_window
window
=
torch
.
i0
(
beta
*
torch
.
sqrt
(
1
-
(
t
/
lowpass_filter_width
)
**
2
))
/
torch
.
i0
(
beta
)
if
beta
is
None
:
beta
=
14.769656459379492
beta_tensor
=
torch
.
tensor
(
float
(
beta
))
window
=
torch
.
i0
(
beta_tensor
*
torch
.
sqrt
(
1
-
(
t
/
lowpass_filter_width
)
**
2
))
/
torch
.
i0
(
beta_tensor
)
t
*=
math
.
pi
t
*=
math
.
pi
kernel
=
torch
.
where
(
t
==
0
,
torch
.
tensor
(
1.
).
to
(
t
),
torch
.
sin
(
t
)
/
t
)
kernel
=
torch
.
where
(
t
==
0
,
torch
.
tensor
(
1.
).
to
(
t
),
torch
.
sin
(
t
)
/
t
)
kernel
.
mul_
(
window
)
kernel
.
mul_
(
window
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment