"app/git@developer.sourcefind.cn:OpenDAS/ollama.git" did not exist on "e51dead6363e941b480f5bf1270254db7e175083"
Unverified Commit 6d5e879c authored by Krishna Kalyan's avatar Krishna Kalyan Committed by GitHub
Browse files

BC-Breaking: Remove deprecated `normalized` argument from griffinlim (#1369)

parent f5ac116f
...@@ -52,14 +52,13 @@ class TestFunctional(common_utils.TorchaudioTestCase): ...@@ -52,14 +52,13 @@ class TestFunctional(common_utils.TorchaudioTestCase):
hop = 200 hop = 200
window = torch.hann_window(ws) window = torch.hann_window(ws)
power = 2 power = 2
normalize = False
momentum = 0.99 momentum = 0.99
n_iter = 32 n_iter = 32
length = 1000 length = 1000
torch.random.manual_seed(0) torch.random.manual_seed(0)
batch = torch.rand(self.batch_size, 1, 201, 6) batch = torch.rand(self.batch_size, 1, 201, 6)
self.assert_batch_consistency( self.assert_batch_consistency(
F.griffinlim, batch, window, n_fft, hop, ws, power, normalize, F.griffinlim, batch, window, n_fft, hop, ws, power,
n_iter, momentum, length, 0, atol=5e-5) n_iter, momentum, length, 0, atol=5e-5)
@parameterized.expand(list(itertools.product( @parameterized.expand(list(itertools.product(
......
...@@ -38,7 +38,7 @@ class TestFunctional(common_utils.TorchaudioTestCase): ...@@ -38,7 +38,7 @@ class TestFunctional(common_utils.TorchaudioTestCase):
init = 'random' if rand_init else None init = 'random' if rand_init else None
specgram = F.spectrogram(tensor, 0, window, n_fft, hop, ws, 2, normalize).sqrt() specgram = F.spectrogram(tensor, 0, window, n_fft, hop, ws, 2, normalize).sqrt()
ta_out = F.griffinlim(specgram, window, n_fft, hop, ws, 1, normalize, ta_out = F.griffinlim(specgram, window, n_fft, hop, ws, 1,
n_iter, momentum, length, rand_init) n_iter, momentum, length, rand_init)
lr_out = librosa.griffinlim(specgram.squeeze(0).numpy(), n_iter=n_iter, hop_length=hop, lr_out = librosa.griffinlim(specgram.squeeze(0).numpy(), n_iter=n_iter, hop_length=hop,
momentum=momentum, init=init, length=length) momentum=momentum, init=init, length=length)
......
...@@ -41,12 +41,11 @@ class Functional(common_utils.TestBaseMixin): ...@@ -41,12 +41,11 @@ class Functional(common_utils.TestBaseMixin):
hop = 200 hop = 200
window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype) window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype)
power = 2. power = 2.
normalize = False
momentum = 0.99 momentum = 0.99
n_iter = 32 n_iter = 32
length = 1000 length = 1000
rand_int = False rand_int = False
return F.griffinlim(tensor, window, n_fft, hop, ws, power, normalize, n_iter, momentum, length, rand_int) return F.griffinlim(tensor, window, n_fft, hop, ws, power, n_iter, momentum, length, rand_int)
tensor = torch.rand((1, 201, 6)) tensor = torch.rand((1, 201, 6))
self._assert_consistency(func, tensor) self._assert_consistency(func, tensor)
......
...@@ -118,7 +118,6 @@ def griffinlim( ...@@ -118,7 +118,6 @@ def griffinlim(
hop_length: int, hop_length: int,
win_length: int, win_length: int,
power: float, power: float,
normalized: bool,
n_iter: int, n_iter: int,
momentum: float, momentum: float,
length: Optional[int], length: Optional[int],
...@@ -148,7 +147,6 @@ def griffinlim( ...@@ -148,7 +147,6 @@ def griffinlim(
win_length (int): Window size. (Default: ``n_fft``) win_length (int): Window size. (Default: ``n_fft``)
power (float): Exponent for the magnitude spectrogram, power (float): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc. (must be > 0) e.g., 1 for energy, 2 for power, etc.
normalized (bool): Whether to normalize by magnitude after stft.
n_iter (int): Number of iteration for phase recovery process. n_iter (int): Number of iteration for phase recovery process.
momentum (float): The momentum parameter for fast Griffin-Lim. momentum (float): The momentum parameter for fast Griffin-Lim.
Setting this to 0 recovers the original Griffin-Lim method. Setting this to 0 recovers the original Griffin-Lim method.
...@@ -162,12 +160,6 @@ def griffinlim( ...@@ -162,12 +160,6 @@ def griffinlim(
assert momentum < 1, 'momentum={} > 1 can be unstable'.format(momentum) assert momentum < 1, 'momentum={} > 1 can be unstable'.format(momentum)
assert momentum >= 0, 'momentum={} < 0'.format(momentum) assert momentum >= 0, 'momentum={} < 0'.format(momentum)
if normalized:
warnings.warn(
"The argument normalized is not used in Griffin-Lim, "
"and will be removed in v0.9.0 release. To suppress this warning, "
"please use `normalized=False`.")
# pack batch # pack batch
shape = specgram.size() shape = specgram.size()
specgram = specgram.reshape([-1] + list(shape[-2:])) specgram = specgram.reshape([-1] + list(shape[-2:]))
......
...@@ -122,7 +122,6 @@ class GriffinLim(torch.nn.Module): ...@@ -122,7 +122,6 @@ class GriffinLim(torch.nn.Module):
that is applied/multiplied to each frame/window. (Default: ``torch.hann_window``) that is applied/multiplied to each frame/window. (Default: ``torch.hann_window``)
power (float, optional): Exponent for the magnitude spectrogram, power (float, optional): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc. (Default: ``2``) (must be > 0) e.g., 1 for energy, 2 for power, etc. (Default: ``2``)
normalized (bool, optional): Whether to normalize by magnitude after stft. (Default: ``False``)
wkwargs (dict or None, optional): Arguments for window function. (Default: ``None``) wkwargs (dict or None, optional): Arguments for window function. (Default: ``None``)
momentum (float, optional): The momentum parameter for fast Griffin-Lim. momentum (float, optional): The momentum parameter for fast Griffin-Lim.
Setting this to 0 recovers the original Griffin-Lim method. Setting this to 0 recovers the original Griffin-Lim method.
...@@ -158,7 +157,6 @@ class GriffinLim(torch.nn.Module): ...@@ -158,7 +157,6 @@ class GriffinLim(torch.nn.Module):
hop_length: Optional[int] = None, hop_length: Optional[int] = None,
window_fn: Callable[..., Tensor] = torch.hann_window, window_fn: Callable[..., Tensor] = torch.hann_window,
power: float = 2., power: float = 2.,
normalized: bool = False,
wkwargs: Optional[dict] = None, wkwargs: Optional[dict] = None,
momentum: float = 0.99, momentum: float = 0.99,
length: Optional[int] = None, length: Optional[int] = None,
...@@ -174,7 +172,6 @@ class GriffinLim(torch.nn.Module): ...@@ -174,7 +172,6 @@ class GriffinLim(torch.nn.Module):
self.hop_length = hop_length if hop_length is not None else self.win_length // 2 self.hop_length = hop_length if hop_length is not None else self.win_length // 2
window = window_fn(self.win_length) if wkwargs is None else window_fn(self.win_length, **wkwargs) window = window_fn(self.win_length) if wkwargs is None else window_fn(self.win_length, **wkwargs)
self.register_buffer('window', window) self.register_buffer('window', window)
self.normalized = normalized
self.length = length self.length = length
self.power = power self.power = power
self.momentum = momentum / (1 + momentum) self.momentum = momentum / (1 + momentum)
...@@ -191,7 +188,7 @@ class GriffinLim(torch.nn.Module): ...@@ -191,7 +188,7 @@ class GriffinLim(torch.nn.Module):
Tensor: waveform of (..., time), where time equals the ``length`` parameter if given. Tensor: waveform of (..., time), where time equals the ``length`` parameter if given.
""" """
return F.griffinlim(specgram, self.window, self.n_fft, self.hop_length, self.win_length, self.power, return F.griffinlim(specgram, self.window, self.n_fft, self.hop_length, self.win_length, self.power,
self.normalized, self.n_iter, self.momentum, self.length, self.rand_init) self.n_iter, self.momentum, self.length, self.rand_init)
class AmplitudeToDB(torch.nn.Module): class AmplitudeToDB(torch.nn.Module):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment