Unverified Commit 4ea80c56 authored by yangarbiter's avatar yangarbiter Committed by GitHub
Browse files

Add an inference example for Tacotron2 (#1654)

parent ee74056f
......@@ -141,3 +141,116 @@ python train.py \
--checkpoint-path ./english_phonemes_wavernn_ckpt.pth \
--dataset-path ./
```
## Text-to-speech pipeline
Here we present an example of how to use Tacotron2 to generate audio from text.
The text-to-speech pipeline goes as follows:
1. text preprocessing: encoder the text into list of symbols (the symbols can represent characters, phonemes, etc.)
2. spectrogram generation: after retrieving the list of symbols, we feed this list to a Tacotron2 model and the model
will output the mel spectrogram.
3. time-domain conversion: when the mel spectrogram is generated, we need to convert it into audio with a vocoder.
Currently, there are three vocoders being supported in this script, which includes the
[WaveRNN](https://pytorch.org/audio/stable/models/wavernn.html),
[Griffin-Lim](https://pytorch.org/audio/stable/transforms.html#griffinlim), and
[Nvidia's WaveGlow](https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/).
The spectro parameters including `n-fft`, `mel-fmin`, `mel-fmax` should be set to the values
used during the training of Tacotron2.
#### Pretrained WaveRNN as the Vocoder
The following command will generate a waveform to `./outputs.wav`
with the text "Hello world!" using WaveRNN as the vocoder.
```bash
python inference.py --checkpoint-path ${model_path} \
--vocoder wavernn \
--n-fft 2048 \
--mel-fmin 40 \
--mel-fmax 11025 \
--input-text "Hello world!" \
--text-preprocessor english_characters \
--output-path "./outputs.wav"
```
If you want to generate a waveform with a different text with phonemes
as the input to Tacotron2, please use the `--text-preprocessor english_phonemes`.
The following is an example.
(Remember to install the [DeepPhonemizer](https://github.com/as-ideas/DeepPhonemizer)
and download their pretrained weights.
```bash
python inference.py --checkpoint-path ${model_path} \
--vocoder wavernn \
--n-fft 2048 \
--mel-fmin 40 \
--mel-fmax 11025 \
--input-text "Hello world!" \
--text-preprocessor english_phonemes \
--phonimizer DeepPhonemizer \
--phoimizer-checkpoint ./en_us_cmudict_forward.pt \
--cmudict-root ./ \
--output-path "./outputs.wav"
```
To use torchaudio pretrained models, please see the following example command.
For Tacotron2, we use the checkpoint named `"tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech"`, and
for WaveRNN, we use the checkpoint named `"wavernn_10k_epochs_8bits_ljspeech"`.
See https://pytorch.org/audio/stable/models.html for more checkpoint options for Tacotron2 and WaveRNN.
```bash
python inference.py \
--checkpoint-path tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech \
--wavernn-checkpoint-path wavernn_10k_epochs_8bits_ljspeech \
--vocoder wavernn \
--n-fft 2048 \
--mel-fmin 40 \
--mel-fmax 11025 \
--input-text "Hello world!" \
--text-preprocessor english_phonemes \
--phonimizer DeepPhonemizer \
--phoimizer-checkpoint ./en_us_cmudict_forward.pt \
--cmudict-root ./ \
--output-path "./outputs.wav"
```
#### Griffin-Lim's algorithm as the Vocoder
The following command will generate a waveform to `./outputs.wav`
with the text "Hello world!" using Griffin-Lim's algorithm as the vocoder.
```bash
python inference.py --checkpoint-path ${model_path} \
--vocoder griffin_lim \
--n-fft 1024 \
--mel-fmin 0 \
--mel-fmax 8000 \
--input-text "Hello world!" \
--text-preprocessor english_characters \
--output-path "./outputs.wav"
```
#### Nvidia's Waveglow as the Vocoder
The following command will generate a waveform to `./outputs.wav`
with the text `"Hello world!"` using Nvidia's WaveGlow as the vocoder.
The WaveGlow is loaded using the following torchhub's API.
```python
torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_waveglow', model_math='fp16')
```
```bash
python inference.py --checkpoint-path ${model_path} \
--vocoder nvidia_waveglow \
--n-fft 1024 \
--mel-fmin 0 \
--mel-fmax 8000 \
--input-text "Hello world!" \
--text-preprocessor english_characters \
--output-path "./outputs.wav"
```
\ No newline at end of file
"""
Text-to-speech pipeline using Tacotron2.
"""
from functools import partial
import argparse
import os
import random
import sys
import torch
import torchaudio
import numpy as np
from torchaudio.prototype.tacotron2 import Tacotron2
from torchaudio.prototype.tacotron2 import tacotron2 as pretrained_tacotron2
from utils import prepare_input_sequence
from datasets import InverseSpectralNormalization
from text.text_preprocessing import (
available_symbol_set,
available_phonemizers,
get_symbol_list,
text_to_sequence,
)
def parse_args():
r"""
Parse commandline arguments.
"""
from torchaudio.prototype.tacotron2 import _MODEL_CONFIG_AND_URLS as tacotron2_config_and_urls
from torchaudio.models.wavernn import _MODEL_CONFIG_AND_URLS as wavernn_config_and_urls
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--checkpoint-name',
type=str,
default=None,
choices=list(tacotron2_config_and_urls.keys()),
help='[string] The name of the checkpoint to load.'
)
parser.add_argument(
'--checkpoint-path',
type=str,
default=None,
help='[string] Path to the checkpoint file.'
)
parser.add_argument(
'--output-path',
type=str,
default="./audio.wav",
help='[string] Path to the output .wav file.'
)
parser.add_argument(
'--input-text',
'-i',
type=str,
default="Hello world",
help='[string] Type in something here and TTS will generate it!'
)
parser.add_argument(
'--vocoder',
default='nvidia_waveglow',
choices=['griffin_lim', 'wavernn', 'nvidia_waveglow'],
type=str,
help="Select the vocoder to use.",
)
parser.add_argument(
"--jit",
default=False,
action="store_true",
help="If used, the model and inference function is jitted."
)
preprocessor = parser.add_argument_group('text preprocessor setup')
preprocessor.add_argument(
'--text-preprocessor',
default='english_characters',
type=str,
choices=available_symbol_set,
help='select text preprocessor to use.'
)
preprocessor.add_argument(
'--phonemizer',
default="DeepPhonemizer",
type=str,
choices=available_phonemizers,
help='select phonemizer to use, only used when text-preprocessor is "english_phonemes"'
)
preprocessor.add_argument(
'--phonemizer-checkpoint',
default="./en_us_cmudict_forward.pt",
type=str,
help='the path or name of the checkpoint for the phonemizer, '
'only used when text-preprocessor is "english_phonemes"'
)
preprocessor.add_argument(
'--cmudict-root',
default="./",
type=str,
help='the root directory for storing CMU dictionary files'
)
audio = parser.add_argument_group('audio parameters')
audio.add_argument(
'--sample-rate',
default=22050,
type=int,
help='Sampling rate'
)
audio.add_argument(
'--n-fft',
default=1024,
type=int,
help='Filter length for STFT'
)
audio.add_argument(
'--n-mels',
default=80,
type=int,
help=''
)
audio.add_argument(
'--mel-fmin',
default=0.0,
type=float,
help='Minimum mel frequency'
)
audio.add_argument(
'--mel-fmax',
default=8000.0,
type=float,
help='Maximum mel frequency'
)
# parameters for WaveRNN
wavernn = parser.add_argument_group('WaveRNN parameters')
wavernn.add_argument(
'--wavernn-checkpoint-name',
default="wavernn_10k_epochs_8bits_ljspeech",
choices=list(wavernn_config_and_urls.keys()),
help="Select the WaveRNN checkpoint."
)
wavernn.add_argument(
"--wavernn-loss",
default="crossentropy",
choices=["crossentropy"],
type=str,
help="The type of loss the WaveRNN pretrained model is trained on.",
)
wavernn.add_argument(
"--wavernn-no-batch-inference",
default=False,
action="store_true",
help="Don't use batch inference for WaveRNN inference."
)
wavernn.add_argument(
"--wavernn-no-mulaw",
default=False,
action="store_true",
help="Don't use mulaw decoder to decode the signal."
)
wavernn.add_argument(
"--wavernn-batch-timesteps",
default=11000,
type=int,
help="The time steps for each batch. Only used when batch inference is used",
)
wavernn.add_argument(
"--wavernn-batch-overlap",
default=550,
type=int,
help="The overlapping time steps between batches. Only used when batch inference is used",
)
return parser
def unwrap_distributed(state_dict):
r"""torch.distributed.DistributedDataParallel wraps the model with an additional "module.".
This function unwraps this layer so that the weights can be loaded on models with a single GPU.
Args:
state_dict: Original state_dict.
Return:
unwrapped_state_dict: Unwrapped state_dict.
"""
return {k.replace('module.', ''): v for k, v in state_dict.items()}
def nvidia_waveglow_vocode(mel_specgram, device, jit=False):
waveglow = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_waveglow', model_math='fp16')
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow = waveglow.to(device)
waveglow.eval()
if args.jit:
raise ValueError("Vocoder option `nvidia_waveglow is not jittable.")
with torch.no_grad():
waveform = waveglow.infer(mel_specgram).cpu()
return waveform
def wavernn_vocode(mel_specgram, wavernn_checkpoint_name, wavernn_loss, wavernn_no_mulaw,
wavernn_no_batch_inference, wavernn_batch_timesteps, wavernn_batch_overlap,
device, jit):
from torchaudio.models import wavernn
sys.path.append(os.path.join(os.path.dirname(__file__), "../pipeline_wavernn"))
from wavernn_inference_wrapper import WaveRNNInferenceWrapper
from processing import NormalizeDB
wavernn_model = wavernn(wavernn_checkpoint_name).eval().to(device)
wavernn_inference_model = WaveRNNInferenceWrapper(wavernn_model)
if jit:
wavernn_inference_model = torch.jit.script(wavernn_inference_model)
# WaveRNN spectro setting for default checkpoint
# n_fft = 2048
# n_mels = 80
# win_length = 1100
# hop_length = 275
# f_min = 40
# f_max = 11025
transforms = torch.nn.Sequential(
InverseSpectralNormalization(),
NormalizeDB(min_level_db=-100, normalization=True),
)
mel_specgram = transforms(mel_specgram.cpu())
with torch.no_grad():
waveform = wavernn_inference_model(mel_specgram.to(device),
loss_name=wavernn_loss,
mulaw=(not wavernn_no_mulaw),
batched=(not wavernn_no_batch_inference),
timesteps=wavernn_batch_timesteps,
overlap=wavernn_batch_overlap,)
return waveform.unsqueeze(0)
def griffin_lim_vocode(mel_specgram, n_fft, n_mels, sample_rate, mel_fmin, mel_fmax, jit, ):
from torchaudio.transforms import GriffinLim, InverseMelScale
inv_norm = InverseSpectralNormalization()
inv_mel = InverseMelScale(
n_stft=(n_fft // 2 + 1),
n_mels=n_mels,
sample_rate=sample_rate,
f_min=mel_fmin,
f_max=mel_fmax,
mel_scale="slaney",
norm='slaney',
)
griffin_lim = GriffinLim(
n_fft=n_fft,
power=1,
hop_length=256,
win_length=1024,
)
vocoder = torch.nn.Sequential(
inv_norm,
inv_mel,
griffin_lim
)
if jit:
vocoder = torch.jit.script(vocoder)
waveform = vocoder(mel_specgram.cpu())
return waveform
def main(args):
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
device = "cuda" if torch.cuda.is_available() else "cpu"
if args.checkpoint_path is None and args.checkpoint_name is None:
raise ValueError("Either --checkpoint-path or --checkpoint-name must be specified.")
elif args.checkpoint_path is not None and args.checkpoint_name is not None:
raise ValueError("Both --checkpoint-path and --checkpoint-name are specified, "
"can only specify one.")
n_symbols = len(get_symbol_list(args.text_preprocessor))
text_preprocessor = partial(
text_to_sequence,
symbol_list=args.text_preprocessor,
phonemizer=args.phonemizer,
checkpoint=args.phonemizer_checkpoint,
cmudict_root=args.cmudict_root,
)
if args.checkpoint_path is not None:
tacotron2 = Tacotron2(n_symbol=n_symbols)
tacotron2.load_state_dict(
unwrap_distributed(torch.load(args.checkpoint_path, map_location=device)['state_dict']))
tacotron2 = tacotron2.to(device).eval()
elif args.checkpoint_name is not None:
tacotron2 = pretrained_tacotron2(args.checkpoint_name).to(device).eval()
if n_symbols != tacotron2.n_symbols:
raise ValueError("the number of symbols for text_preprocessor ({n_symbols}) "
"should match the number of symbols for the"
"pretrained tacotron2 ({tacotron2.n_symbols}).")
if args.jit:
tacotron2 = torch.jit.script(tacotron2)
sequences, lengths = prepare_input_sequence([args.input_text],
text_processor=text_preprocessor)
sequences, lengths = sequences.long().to(device), lengths.long().to(device)
with torch.no_grad():
mel_specgram, _, _ = tacotron2.infer(sequences, lengths)
if args.vocoder == "nvidia_waveglow":
waveform = nvidia_waveglow_vocode(mel_specgram=mel_specgram, device=device, jit=args.jit)
elif args.vocoder == "wavernn":
waveform = wavernn_vocode(mel_specgram=mel_specgram, device=device, jit=args.jit,
wavernn_loss=args.wavernn_loss, wavernn_no_mulaw=args.wavernn_no_mulaw,
wavernn_no_batch_inference=args.wavernn_no_batch_inference,
wavernn_batch_timesteps=args.wavernn_batch_timesteps,
wavernn_batch_overlap=args.wavernn_batch_overlap)
elif args.vocoder == "griffin_lim":
waveform = griffin_lim_vocode(mel_specgram=mel_specgram, n_fft=args.n_fft, n_mels=args.n_mels,
sample_rate=args.sample_rate, mel_fmin=args.mel_fmin,
mel_fmax=args.mel_fmax, jit=args.jit)
torchaudio.save(args.output_path, waveform, args.sample_rate)
if __name__ == "__main__":
parser = parse_args()
args, _ = parser.parse_known_args()
main(args)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment