Commit 37a2555f authored by Zhaoheng Ni's avatar Zhaoheng Ni Committed by Facebook GitHub Bot
Browse files

Add HuBERT pretrain model to enable training from scratch (#2064)

Summary:
- Add three factory functions:`hubert_pretrain_base`, `hubert_pretrain_large`, and `hubert_pretrain_xlarge`, to enable the HuBERT model to train from scratch.
- Add `num_classes` argument to `hubert_pretrain_base` factory function because the base model has two iterations of training, the first iteration the `num_cluster` is 100, in the second iteration `num_cluster` is 500.
- The model takes `waveforms`, `labels`, and `lengths` as inputs
- The model generates the last layer of transformer embedding, `logit_m`, `logit_u` as the outputs.

Pull Request resolved: https://github.com/pytorch/audio/pull/2064

Reviewed By: hwangjeff, mthrok

Differential Revision: D33338587

Pulled By: nateanl

fbshipit-source-id: 534bc17c576c5f344043d8ba098204b8da6e630a
parent 7bf04d1e
...@@ -59,6 +59,13 @@ Wav2Vec2Model ...@@ -59,6 +59,13 @@ Wav2Vec2Model
.. automethod:: forward .. automethod:: forward
HuBERTPretrainModel
^^^^^^^^^^^^^^^^^^^
.. autoclass:: HuBERTPretrainModel
.. automethod:: forward
Factory Functions Factory Functions
----------------- -----------------
...@@ -98,6 +105,26 @@ hubert_xlarge ...@@ -98,6 +105,26 @@ hubert_xlarge
.. autofunction:: hubert_xlarge .. autofunction:: hubert_xlarge
hubert_pretrain_model
^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: hubert_pretrain_model
hubert_pretrain_base
^^^^^^^^^^^^^^^^^^^^
.. autofunction:: hubert_pretrain_base
hubert_pretrain_large
^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: hubert_pretrain_large
hubert_pretrain_xlarge
^^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: hubert_pretrain_xlarge
Utility Functions Utility Functions
----------------- -----------------
......
...@@ -4,6 +4,7 @@ from .tacotron2 import Tacotron2 ...@@ -4,6 +4,7 @@ from .tacotron2 import Tacotron2
from .wav2letter import Wav2Letter from .wav2letter import Wav2Letter
from .wav2vec2 import ( from .wav2vec2 import (
Wav2Vec2Model, Wav2Vec2Model,
HuBERTPretrainModel,
wav2vec2_model, wav2vec2_model,
wav2vec2_base, wav2vec2_base,
wav2vec2_large, wav2vec2_large,
...@@ -11,6 +12,10 @@ from .wav2vec2 import ( ...@@ -11,6 +12,10 @@ from .wav2vec2 import (
hubert_base, hubert_base,
hubert_large, hubert_large,
hubert_xlarge, hubert_xlarge,
hubert_pretrain_model,
hubert_pretrain_base,
hubert_pretrain_large,
hubert_pretrain_xlarge,
) )
from .wavernn import WaveRNN from .wavernn import WaveRNN
...@@ -20,6 +25,7 @@ __all__ = [ ...@@ -20,6 +25,7 @@ __all__ = [
"ConvTasNet", "ConvTasNet",
"DeepSpeech", "DeepSpeech",
"Wav2Vec2Model", "Wav2Vec2Model",
"HuBERTPretrainModel",
"wav2vec2_model", "wav2vec2_model",
"wav2vec2_base", "wav2vec2_base",
"wav2vec2_large", "wav2vec2_large",
...@@ -27,5 +33,9 @@ __all__ = [ ...@@ -27,5 +33,9 @@ __all__ = [
"hubert_base", "hubert_base",
"hubert_large", "hubert_large",
"hubert_xlarge", "hubert_xlarge",
"hubert_pretrain_model",
"hubert_pretrain_base",
"hubert_pretrain_large",
"hubert_pretrain_xlarge",
"Tacotron2", "Tacotron2",
] ]
from . import utils from . import utils
from .model import ( from .model import (
Wav2Vec2Model, Wav2Vec2Model,
HuBERTPretrainModel,
wav2vec2_model, wav2vec2_model,
wav2vec2_base, wav2vec2_base,
wav2vec2_large, wav2vec2_large,
...@@ -8,10 +9,15 @@ from .model import ( ...@@ -8,10 +9,15 @@ from .model import (
hubert_base, hubert_base,
hubert_large, hubert_large,
hubert_xlarge, hubert_xlarge,
hubert_pretrain_model,
hubert_pretrain_base,
hubert_pretrain_large,
hubert_pretrain_xlarge,
) )
__all__ = [ __all__ = [
"Wav2Vec2Model", "Wav2Vec2Model",
"HuBERTPretrainModel",
"wav2vec2_model", "wav2vec2_model",
"wav2vec2_base", "wav2vec2_base",
"wav2vec2_large", "wav2vec2_large",
...@@ -19,5 +25,9 @@ __all__ = [ ...@@ -19,5 +25,9 @@ __all__ = [
"hubert_base", "hubert_base",
"hubert_large", "hubert_large",
"hubert_xlarge", "hubert_xlarge",
"hubert_pretrain_model",
"hubert_pretrain_base",
"hubert_pretrain_large",
"hubert_pretrain_xlarge",
"utils", "utils",
] ]
...@@ -3,7 +3,7 @@ from typing import Optional, Tuple, List ...@@ -3,7 +3,7 @@ from typing import Optional, Tuple, List
import torch import torch
from torch import Tensor, nn from torch import Tensor, nn
from torch.nn import Module from torch.nn import Module, Parameter
_LG = logging.getLogger(__name__) _LG = logging.getLogger(__name__)
...@@ -713,3 +713,327 @@ def _get_encoder( ...@@ -713,3 +713,327 @@ def _get_encoder(
layer_drop=layer_drop, layer_drop=layer_drop,
) )
return Encoder(feature_projection, transformer) return Encoder(feature_projection, transformer)
def _compute_mask_indices(
shape: Tuple[int, int],
padding_mask: Optional[Tensor],
mask_prob: float,
mask_length: int,
mask_type: str = "static",
mask_other: float = 0.0,
min_masks: int = 0,
no_overlap: bool = False,
min_space: int = 0,
) -> Tensor:
"""Computes random mask spans for a given shape.
Args:
shape (int, int): The shape for which to compute masks.
The first element is batch size and second is the number of frames.
padding_mask (Tensor or None): The padding mask of the same dimension as shape,
which will prevent masking padded elements.
mask_prob (float): Probability for each token to be chosen as start of the span to be masked.
This will be multiplied by number of timesteps divided by length of mask span to mask
approximately this percentage of all elements. However due to overlaps, the actual number
will be smaller (unless no_overlap is True).
mask_type (str): How to compute mask lengths. Options: [``static``, ``uniform``, ``normal``, ``poisson``].
``static``: Fixed size
``uniform``: Sample from uniform distribution [mask_other, mask_length*2]
``normal``: Sample from normal distribution with mean ``mask_length`` and stdev ``mask_other``.
``poisson``: Sample from possion distribution with lambda = ``mask_length``.
min_masks (int): Minimum number of masked spans.
no_overlap (bool): If false, will switch to an alternative recursive algorithm
that prevents spans from overlapping.
min_space (int): How many frames to keep unmasked between spans (Only used if no_overlap is True).
Returns:
(Tensor): The mask indices of dimension `[batch, frame]`.
"""
batch_size, frame = shape
mask = torch.full((batch_size, frame), False)
# add a random number for probabilistic rounding
all_num_mask = int(mask_prob * frame / float(mask_length) + torch.rand(1))
all_num_mask = max(min_masks, all_num_mask)
mask_idcs = []
for i in range(batch_size):
if padding_mask is not None:
sz = frame - padding_mask[i].long().sum().item()
# add a random number for probabilistic rounding
num_mask = int(mask_prob * sz / float(mask_length) + torch.rand(1))
num_mask = max(min_masks, num_mask)
else:
sz = frame
num_mask = all_num_mask
if mask_type == "static":
lengths = torch.full((num_mask,), mask_length)
elif mask_type == "uniform":
lengths = torch.randint(mask_other, mask_length * 2 + 1, size=(num_mask,))
elif mask_type == "normal":
lengths = torch.normal(mask_length, mask_other, size=(num_mask,))
lengths = torch.maximum(torch.ones(1), torch.round(lengths)).int()
elif mask_type == "poisson":
lengths = torch.poisson(mask_length, size=(num_mask,))
lengths = torch.round(lengths).int()
else:
raise Exception(f"unknown mask selection: {mask_type}")
if sum(lengths) == 0:
lengths[0] = min(mask_length, sz - 1)
if no_overlap:
mask_idc = []
def arrange(s, e, length, keep_length):
span_start = torch.randint(s, e - length, size=(1,))
mask_idc.extend(span_start + i for i in range(length))
new_parts = []
if span_start - s - min_space >= keep_length:
new_parts.append((s, span_start - min_space + 1))
if e - span_start - keep_length - min_space > keep_length:
new_parts.append((span_start + length + min_space, e))
return new_parts
parts = [(0, sz)]
min_length = min(lengths)
for length in sorted(lengths, reverse=True):
lens = torch.tensor([e - s for s, e in parts], dtype=torch.int)
lens[lens < length + min_space] = 0
l_sum = lens.sum()
if l_sum == 0:
break
probs = lens / l_sum
c = torch.distributions.categorical.Categorical(probs).sample()
s, e = parts.pop(c)
parts.extend(arrange(s, e, length, min_length))
mask_idc = torch.tensor(mask_idc)
else:
min_len = min(lengths)
if sz - min_len <= num_mask:
min_len = sz - num_mask - 1
mask_idc = torch.multinomial(torch.ones((sz - min_len,)), num_samples=num_mask, replacement=False)
mask_idc = torch.tensor(
[mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j])]
)
mask_idcs.append(torch.unique(mask_idc[mask_idc < sz]))
min_len = min([len(m) for m in mask_idcs])
for i, mask_idc in enumerate(mask_idcs):
if len(mask_idc) > min_len:
mask_idc = torch.index_select(
mask_idc,
0,
torch.multinomial(
torch.ones((mask_idc.shape[0],)),
num_samples=min_len,
replacement=False,
),
)
mask[i, mask_idc] = True
return mask
def _get_padding_mask(input: Tensor, lengths: Tensor) -> Tensor:
"""Generate the padding mask given the padded input and the lengths Tensors.
Args:
input (Tensor): The padded Tensor of dimension `[batch, max_len, frequency]`.
lengths (Tensor): The lengths Tensor of dimension `[batch,]`.
Returns:
(Tensor): The padding mask.
"""
batch_size, max_len, _ = input.shape
mask = torch.arange(max_len, device=lengths.device).expand(batch_size, max_len) >= lengths[:, None]
return mask
class MaskGenerator(Module):
"""Generate the masks for masked prediction.
Args:
encoder_embed_dim (int): The dimension of the transformer embedding output.
mask_prob (float): Probability for each token to be chosen as start of the span to be masked.
This will be multiplied by number of timesteps divided by length of mask span to mask
approximately this percentage of all elements. However due to overlaps, the actual number
will be smaller (unless no_overlap is True).
mask_selection (str): How to choose the mask length.
Options: [``static``, ``uniform``, ``normal``, ``poisson``].
mask_other (float): Secondary mask argument (used for more complex distributions).
mask_length (int): The lengths of the mask.
no_mask_overlap (bool): Whether to allow masks to overlap.
mask_min_space (int): Minimum space between spans (if no overlap is enabled).
mask_channel_prob (float): The probability of replacing a feature with 0.
mask_channel_selection (str): How to choose the mask length for channel masking.
Options: [``static``, ``uniform``, ``normal``, ``poisson``].
mask_channel_other (float): Secondary mask argument for channel masking(used for more complex distributions).
mask_channel_length (int): Minimum space between spans (if no overlap is enabled) for channel masking.
no_mask_channel_overlap (bool): Whether to allow channel masks to overlap.
mask_channel_min_space (int): Minimum space between spans for channel masking(if no overlap is enabled).
"""
def __init__(
self,
encoder_embed_dim: int,
mask_prob: float,
mask_selection: str,
mask_other: float,
mask_length: int,
no_mask_overlap: bool,
mask_min_space: int,
mask_channel_prob: float,
mask_channel_selection: str,
mask_channel_other: float,
mask_channel_length: int,
no_mask_channel_overlap: bool,
mask_channel_min_space: int,
):
super().__init__()
self.mask_prob = mask_prob
self.mask_selection = mask_selection
self.mask_other = mask_other
self.mask_length = mask_length
self.no_mask_overlap = no_mask_overlap
self.mask_min_space = mask_min_space
self.mask_channel_prob = mask_channel_prob
self.mask_channel_selection = mask_channel_selection
self.mask_channel_other = mask_channel_other
self.mask_channel_length = mask_channel_length
self.no_mask_channel_overlap = no_mask_channel_overlap
self.mask_channel_min_space = mask_channel_min_space
self.mask_embedding = Parameter(torch.FloatTensor(encoder_embed_dim))
torch.nn.init.uniform_(self.mask_embedding)
def forward(self, x: Tensor, padding_mask: Optional[Tensor]) -> Tensor:
"""
Args:
x (Tensor): The encoded representations after feature extraction module.
padding_mask (Tensor or None): The padding mask of the same dimension as shape,
which will prevent masking padded elements.
Returns:
Tensor: The feature representations after masking.
Tensor: The generated mask indices.
"""
B, T, C = x.shape
if self.mask_prob > 0:
mask_indices = _compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob,
self.mask_length,
self.mask_selection,
self.mask_other,
min_masks=2,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
)
mask_indices = mask_indices.to(x.device)
x[mask_indices] = self.mask_embedding
else:
mask_indices = None
if self.mask_channel_prob > 0:
mask_channel_indices = _compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = mask_channel_indices.to(x.device).unsqueeze(1).expand(-1, T, -1)
x[mask_channel_indices] = 0
return x, mask_indices
def _compute_logits(
proj_x: Tensor,
target: Tensor,
label_embeddings: Parameter,
) -> Tensor:
"""Compute the logits of the embeddings.
Args:
proj_x (Tensor): The projected masked representations of dimension `[batch, frame, final_dim]`.
target (Tensor): The target Tensor of dimension `[batch, frame, final_dim]`.
label_embeddings (Parameter): The trainable embeddings of target of dimension `[num_class, final_dim]`.
Returns:
(Tensor): The logits of the inputs.
"""
logit_temp = 0.1
pos = torch.index_select(label_embeddings, 0, target.long())
negs = label_embeddings.unsqueeze(1).expand(-1, proj_x.size(0), -1)
neg_is_pos = (pos == negs).all(-1)
pos = pos.unsqueeze(0)
targets = torch.cat([pos, negs], dim=0)
logits = torch.cosine_similarity(proj_x.float(), targets.float(), dim=-1).type_as(proj_x)
logits /= logit_temp
if neg_is_pos.any():
logits[1:][neg_is_pos] = float("-inf")
logits = logits.transpose(0, 1) # (num_x, num_cls+1)
return logits
class LogitGenerator(Module):
"""Generate the logits of masked and unmasked inputs.
Args:
encoder_embed_dim (int): The dimension of the transformer embedding output.
num_classes (int): The number of classes in the labels.
final_dim (int): Project final representations and targets to `final_dim`.
skip_masked (bool): If True, skip computing losses over masked frames.
skip_nomask (bool): If True, skip computing losses over unmasked frames.
"""
def __init__(
self,
encoder_embed_dim: int,
num_classes: int,
final_dim: int,
skip_masked: bool,
skip_nomask: bool,
):
super().__init__()
self.label_embeddings = Parameter(torch.FloatTensor(num_classes, final_dim))
torch.nn.init.uniform_(self.label_embeddings)
self.final_proj = torch.nn.Linear(encoder_embed_dim, final_dim)
self.skip_masked = skip_masked
self.skip_nomask = skip_nomask
def forward(self, x: Tensor, label: Tensor, mask_m: Tensor, mask_u: Tensor) -> Tuple[Tensor, Tensor]:
"""
Args:
x (Tensor): The feature representation of the last transformer layer.
label (Tensor): The label Tensor of dimension `[batch, frame]`.
mask_m (Tensor): The masked indices of dimension `[batch, frame]`.
mask_u (Tensor): The unmasked indices of dimension `[batch, frame]`.
Returns:
Tensor: The logits of masked frames. Tensor of dimension `[masked_frame, final_dim]`.
Tensor: The logits of unmasked frames. Tensor of dimension `[unmasked_frame, final_dim]`.
"""
proj_x = self.final_proj(x)
if self.skip_masked:
logit_m = None
else:
proj_x_m = proj_x[mask_m]
label_m = label[mask_m]
logit_m = _compute_logits(proj_x_m, label_m, self.label_embeddings)
if self.skip_nomask:
logit_u = None
else:
proj_x_u = proj_x[mask_u]
label_u = label[mask_u]
logit_u = _compute_logits(proj_x_u, label_u, self.label_embeddings)
return logit_m, logit_u
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment