Commit 2d846263 authored by moto's avatar moto Committed by Facebook GitHub Bot
Browse files

Split Streaming API tutorials into two (#2446)

Summary:
The Streaming API tutorial has gotten long, so this commit split it into two.

Pull Request resolved: https://github.com/pytorch/audio/pull/2446

Reviewed By: hwangjeff

Differential Revision: D36987513

Pulled By: mthrok

fbshipit-source-id: 13e3aad74c0d0e654c39c0eeceffca1a00b0dac4
parent 10d1bd89
......@@ -72,12 +72,13 @@ Getting Started
:caption: Getting Started
tutorials/audio_io_tutorial
tutorials/streaming_api_tutorial
tutorials/streaming_api2_tutorial
tutorials/audio_resampling_tutorial
tutorials/audio_data_augmentation_tutorial
tutorials/audio_feature_extractions_tutorial
tutorials/audio_feature_augmentation_tutorial
tutorials/audio_datasets_tutorial
tutorials/streaming_api_tutorial
Advanced Usages
---------------
......
"""
Media Stream API - Pt. 2
========================
This tutorial is the continuation of
`Media Stream API - Pt.1 <./streaming_api_tutorial.html>`__.
This shows how to use `StreamReader` for
- Device inputs, such as microphone, webcam and screen recording
- Generating synthetic audio / video
- Applying preprocessing with custom filter expressions
"""
import torch
import torchaudio
print(torch.__version__)
print(torchaudio.__version__)
######################################################################
#
try:
from torchaudio.io import StreamReader
except ModuleNotFoundError:
try:
import google.colab
print(
"""
To enable running this notebook in Google Colab, install nightly
torch and torchaudio builds and the requisite third party libraries by
adding the following code block to the top of the notebook before running it:
!pip3 uninstall -y torch torchvision torchaudio
!pip3 install --pre torch torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
!add-apt-repository -y ppa:savoury1/ffmpeg4
!apt-get -qq install -y ffmpeg
"""
)
except ModuleNotFoundError:
pass
raise
import IPython
import matplotlib.pyplot as plt
base_url = "https://download.pytorch.org/torchaudio/tutorial-assets"
AUDIO_URL = f"{base_url}/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
VIDEO_URL = f"{base_url}/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4.mp4"
######################################################################
# Audio / Video device input
# --------------------------
#
# .. seealso::
#
# - `Accelerated Video Decoding with NVDEC <../hw_acceleration_tutorial.html>`__.
# - `Online ASR with Emformer RNN-T <./online_asr_tutorial.html>`__.
# - `Device ASR with Emformer RNN-T <./device_asr.html>`__.
#
# Given that the system has proper media devices and libavdevice is
# configured to use the devices, the streaming API can
# pull media streams from these devices.
#
# To do this, we pass additional parameters ``format`` and ``option``
# to the constructor. ``format`` specifies the device component and
# ``option`` dictionary is specific to the specified component.
#
# The exact arguments to be passed depend on the system configuration.
# Please refer to https://ffmpeg.org/ffmpeg-devices.html for the detail.
#
# The following example illustrates how one can do this on MacBook Pro.
#
# First, we need to check the available devices.
#
# .. code::
#
# $ ffmpeg -f avfoundation -list_devices true -i ""
# [AVFoundation indev @ 0x143f04e50] AVFoundation video devices:
# [AVFoundation indev @ 0x143f04e50] [0] FaceTime HD Camera
# [AVFoundation indev @ 0x143f04e50] [1] Capture screen 0
# [AVFoundation indev @ 0x143f04e50] AVFoundation audio devices:
# [AVFoundation indev @ 0x143f04e50] [0] MacBook Pro Microphone
#
# We use `FaceTime HD Camera` as video device (index 0) and
# `MacBook Pro Microphone` as audio device (index 0).
#
# If we do not pass any ``option``, the device uses its default
# configuration. The decoder might not support the configuration.
#
# .. code::
#
# >>> StreamReader(
# ... src="0:0", # The first 0 means `FaceTime HD Camera`, and
# ... # the second 0 indicates `MacBook Pro Microphone`.
# ... format="avfoundation",
# ... )
# [avfoundation @ 0x125d4fe00] Selected framerate (29.970030) is not supported by the device.
# [avfoundation @ 0x125d4fe00] Supported modes:
# [avfoundation @ 0x125d4fe00] 1280x720@[1.000000 30.000000]fps
# [avfoundation @ 0x125d4fe00] 640x480@[1.000000 30.000000]fps
# Traceback (most recent call last):
# File "<stdin>", line 1, in <module>
# ...
# RuntimeError: Failed to open the input: 0:0
#
# By providing ``option``, we can change the format that the device
# streams to a format supported by decoder.
#
# .. code::
#
# >>> streamer = StreamReader(
# ... src="0:0",
# ... format="avfoundation",
# ... option={"framerate": "30", "pixel_format": "bgr0"},
# ... )
# >>> for i in range(streamer.num_src_streams):
# ... print(streamer.get_src_stream_info(i))
# SourceVideoStream(media_type='video', codec='rawvideo', codec_long_name='raw video', format='bgr0', bit_rate=0, width=640, height=480, frame_rate=30.0)
# SourceAudioStream(media_type='audio', codec='pcm_f32le', codec_long_name='PCM 32-bit floating point little-endian', format='flt', bit_rate=3072000, sample_rate=48000.0, num_channels=2)
#
######################################################################
# Synthetic source streams
# ------------------------
#
# As a part of device integration, ffmpeg provides a "virtual device"
# interface. This interface provides synthetic audio / video data
# generation using libavfilter.
#
# To use this, we set ``format=lavfi`` and provide a filter description
# to ``src``.
#
# The detail of filter description can be found at
# https://ffmpeg.org/ffmpeg-filters.html
#
######################################################################
# Audio Examples
# ~~~~~~~~~~~~~~
#
######################################################################
# Sine wave
# ^^^^^^^^^
# https://ffmpeg.org/ffmpeg-filters.html#sine
#
# .. code::
#
# StreamReader(src="sine=sample_rate=8000:frequency=360", format="lavfi")
#
# .. raw:: html
#
# <audio controls>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/sine.wav">
# </audio>
# <img
# src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/sine.png"
# class="sphx-glr-single-img" style="width:80%">
#
######################################################################
# Signal with arbitral expression
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# https://ffmpeg.org/ffmpeg-filters.html#aevalsrc
#
# .. code::
#
# # 5 Hz binaural beats on a 360 Hz carrier
# StreamReader(
# src=(
# 'aevalsrc='
# 'sample_rate=8000:'
# 'exprs=0.1*sin(2*PI*(360-5/2)*t)|0.1*sin(2*PI*(360+5/2)*t)'
# ),
# format='lavfi',
# )
#
# .. raw:: html
#
# <audio controls>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/aevalsrc.wav">
# </audio>
# <img
# src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/aevalsrc.png"
# class="sphx-glr-single-img" style="width:80%">
#
######################################################################
# Noise
# ^^^^^
# https://ffmpeg.org/ffmpeg-filters.html#anoisesrc
#
# .. code::
#
# StreamReader(src="anoisesrc=color=pink:sample_rate=8000:amplitude=0.5", format="lavfi")
#
# .. raw:: html
#
# <audio controls>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/anoisesrc.wav">
# </audio>
# <img
# src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/anoisesrc.png"
# class="sphx-glr-single-img" style="width:80%">
#
######################################################################
# Video Examples
# ~~~~~~~~~~~~~~
#
######################################################################
# Cellular automaton
# ^^^^^^^^^^^^^^^^^^
# https://ffmpeg.org/ffmpeg-filters.html#cellauto
#
# .. code::
#
# StreamReader(src=f"cellauto", format="lavfi")
#
# .. raw:: html
#
# <video controls autoplay loop muted>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/cellauto.mp4">
# </video>
#
######################################################################
# Mandelbrot
# ^^^^^^^^^^
# https://ffmpeg.org/ffmpeg-filters.html#cellauto
#
# .. code::
#
# StreamReader(src=f"mandelbrot", format="lavfi")
#
# .. raw:: html
#
# <video controls autoplay loop muted>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/mandelbrot.mp4">
# </video>
#
######################################################################
# MPlayer Test patterns
# ^^^^^^^^^^^^^^^^^^^^^
# https://ffmpeg.org/ffmpeg-filters.html#mptestsrc
#
# .. code::
#
# StreamReader(src=f"mptestsrc", format="lavfi")
#
# .. raw:: html
#
# <video controls autoplay loop muted width=192 height=192>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/mptestsrc.mp4">
# </video>
#
######################################################################
# John Conway's life game
# ^^^^^^^^^^^^^^^^^^^^^^^
# https://ffmpeg.org/ffmpeg-filters.html#life
#
# .. code::
#
# StreamReader(src=f"life", format="lavfi")
#
# .. raw:: html
#
# <video controls autoplay loop muted>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/life.mp4">
# </video>
#
######################################################################
# Sierpinski carpet/triangle fractal
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# https://ffmpeg.org/ffmpeg-filters.html#sierpinski
#
# .. code::
#
# StreamReader(src=f"sierpinski", format="lavfi")
#
# .. raw:: html
#
# <video controls autoplay loop muted>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/sierpinski.mp4">
# </video>
#
######################################################################
# Custom filters
# --------------
#
# When defining an output stream, you can use
# :py:meth:`~torchaudio.io.StreamReader.add_audio_stream` and
# :py:meth:`~torchaudio.io.StreamReader.add_video_stream` methods.
#
# These methods take ``filter_desc`` argument, which is a string
# formatted according to ffmpeg's
# `filter expression <https://ffmpeg.org/ffmpeg-filters.html>`_.
#
# The difference between ``add_basic_(audio|video)_stream`` and
# ``add_(audio|video)_stream`` is that ``add_basic_(audio|video)_stream``
# constructs the filter expression and passes it to the same underlying
# implementation. Everything ``add_basic_(audio|video)_stream`` can be
# achieved with ``add_(audio|video)_stream``.
#
# .. note::
#
# - When applying custom filters, the client code must convert
# the audio/video stream to one of the formats that torchaudio
# can convert to tensor format.
# This can be achieved, for example, by applying
# ``format=pix_fmts=rgb24`` to video stream and
# ``aformat=sample_fmts=fltp`` to audio stream.
# - Each output stream has separate filter graph. Therefore, it is
# not possible to use different input/output streams for a
# filter expression. However, it is possible to split one input
# stream into multiple of them, and merge them later.
#
######################################################################
# Audio Examples
# ~~~~~~~~~~~~~~
#
#
# fmt: off
descs = [
# No filtering
"anull",
# Apply a highpass filter then a lowpass filter
"highpass=f=200,lowpass=f=1000",
# Manipulate spectrogram
(
"afftfilt="
"real='hypot(re,im)*sin(0)':"
"imag='hypot(re,im)*cos(0)':"
"win_size=512:"
"overlap=0.75"
),
# Manipulate spectrogram
(
"afftfilt="
"real='hypot(re,im)*cos((random(0)*2-1)*2*3.14)':"
"imag='hypot(re,im)*sin((random(1)*2-1)*2*3.14)':"
"win_size=128:"
"overlap=0.8"
),
]
# fmt: on
######################################################################
#
sample_rate = 8000
streamer = StreamReader(AUDIO_URL)
for desc in descs:
streamer.add_audio_stream(
frames_per_chunk=40000,
filter_desc=f"aresample={sample_rate},{desc},aformat=sample_fmts=fltp",
)
chunks = next(streamer.stream())
def _display(i):
print("filter_desc:", streamer.get_out_stream_info(i).filter_description)
_, axs = plt.subplots(2, 1)
waveform = chunks[i][:, 0]
axs[0].plot(waveform)
axs[0].grid(True)
axs[0].set_ylim([-1, 1])
plt.setp(axs[0].get_xticklabels(), visible=False)
axs[1].specgram(waveform, Fs=sample_rate)
return IPython.display.Audio(chunks[i].T, rate=sample_rate)
######################################################################
# Original
# ^^^^^^^^
#
_display(0)
######################################################################
# Highpass / lowpass filter
# ^^^^^^^^^^^^^^^^^^^^^^^^^
#
_display(1)
######################################################################
# FFT filter - Robot 🤖
# ^^^^^^^^^^^^^^^^^^^^^
#
_display(2)
######################################################################
# FFT filter - Whisper
# ^^^^^^^^^^^^^^^^^^^^
#
_display(3)
######################################################################
# Video Examples
# ~~~~~~~~~~~~~~
#
# fmt: off
descs = [
# No effect
"null",
# Split the input stream and apply horizontal flip to the right half.
(
"split [main][tmp];"
"[tmp] crop=iw/2:ih:0:0, hflip [flip];"
"[main][flip] overlay=W/2:0"
),
# Edge detection
"edgedetect=mode=canny",
# Rotate image by randomly and fill the background with brown
"rotate=angle=-random(1)*PI:fillcolor=brown",
# Manipulate pixel values based on the coordinate
"geq=r='X/W*r(X,Y)':g='(1-X/W)*g(X,Y)':b='(H-Y)/H*b(X,Y)'"
]
# fmt: on
######################################################################
#
streamer = StreamReader(VIDEO_URL)
for desc in descs:
streamer.add_video_stream(
frames_per_chunk=30,
filter_desc=f"fps=10,{desc},format=pix_fmts=rgb24",
)
streamer.seek(12)
chunks = next(streamer.stream())
def _display(i):
print("filter_desc:", streamer.get_out_stream_info(i).filter_description)
_, axs = plt.subplots(1, 3, figsize=(8, 1.9))
chunk = chunks[i]
for j in range(3):
axs[j].imshow(chunk[10 * j + 1].permute(1, 2, 0))
axs[j].set_axis_off()
plt.tight_layout()
plt.show(block=False)
######################################################################
# Original
# ^^^^^^^^
_display(0)
######################################################################
# Mirror
# ^^^^^^
_display(1)
######################################################################
# Edge detection
# ^^^^^^^^^^^^^^^
_display(2)
######################################################################
# Random rotation
# ^^^^^^^^^^^^^^^
_display(3)
######################################################################
# Pixel manipulation
# ^^^^^^^^^^^^^^^^^^
_display(4)
"""
Media Stream API
================
Media Stream API - Pt. 1
========================
This tutorial shows how to use torchaudio's I/O stream API to
fetch and decode audio/video data and apply preprocessings that
......@@ -25,8 +25,8 @@ libavfilter provides.
#
######################################################################
# 1. Overview
# -----------
# Overview
# --------
#
# Streaming API leverages the powerful I/O features of ffmpeg.
#
......@@ -57,8 +57,8 @@ libavfilter provides.
#
######################################################################
# 2. Preparation
# --------------
# Preparation
# -----------
#
import torch
......@@ -100,8 +100,8 @@ AUDIO_URL = f"{base_url}/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
VIDEO_URL = f"{base_url}/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4.mp4"
######################################################################
# 3. Opening the source
# ---------------------
# Opening the source
# ------------------
#
# There are mainly three different sources that streaming API can
# handle. Whichever source is used, the remaining processes
......@@ -113,7 +113,7 @@ VIDEO_URL = f"{base_url}/stream-api/NASAs_Most_Scientifically_Complex_Space_Obse
#
# The following section covers how to open common media formats.
# For the other streams, please refer to the
# `Advanced I/O streams` section.
# `Media Stream API - Pt.2 <./streaming_api2_tutorial.html>`__.
#
# .. note::
#
......@@ -211,8 +211,8 @@ VIDEO_URL = f"{base_url}/stream-api/NASAs_Most_Scientifically_Complex_Space_Obse
#
######################################################################
# Opening a headerless data
# ~~~~~~~~~~~~~~~~~~~~~~~~~
# Headerless media
# ~~~~~~~~~~~~~~~~
#
# If attempting to load headerless raw data, you can use ``format`` and
# ``option`` to specify the format of the data.
......@@ -233,8 +233,8 @@ VIDEO_URL = f"{base_url}/stream-api/NASAs_Most_Scientifically_Complex_Space_Obse
#
######################################################################
# 4. Checking the source streams
# ------------------------------
# Checking the source streams
# ---------------------------
#
# Once the media is opened, we can inspect the streams and configure
# the output streams.
......@@ -279,8 +279,8 @@ for i in range(streamer.num_src_streams):
print(streamer.get_src_stream_info(i))
######################################################################
# 5. Configuring output streams
# -------------------------------
# Configuring output streams
# --------------------------
#
# The stream API lets you stream data from an arbitrary combination of
# the input streams. If your application does not need audio or video,
......@@ -421,8 +421,8 @@ for i in range(streamer.num_src_streams):
#
######################################################################
# 6. Streaming
# ------------
# Streaming
# ---------
#
# To stream media data, the streamer alternates the process of
# fetching and decoding the source data, and passing the resulting
......@@ -448,8 +448,8 @@ for i in range(streamer.num_src_streams):
#
######################################################################
# 7. Example
# ----------
# Example
# -------
#
# Let's take an example video to configure the output streams.
# We will use the following video.
......@@ -610,449 +610,3 @@ for i, vid in enumerate(vids2):
ax.set_ylabel("Stream 2")
plt.tight_layout()
plt.show(block=False)
######################################################################
# [Advanced I/O streams]
# ----------------------
#
######################################################################
# 1. Audio / Video device input
# -----------------------------
#
# .. seealso::
#
# - `Accelerated Video Decoding with NVDEC <../hw_acceleration_tutorial.html>`__.
# - `Online ASR with Emformer RNN-T <./online_asr_tutorial.html>`__.
# - `Device ASR with Emformer RNN-T <./device_asr.html>`__.
#
# Given that the system has proper media devices and libavdevice is
# configured to use the devices, the streaming API can
# pull media streams from these devices.
#
# To do this, we pass additional parameters ``format`` and ``option``
# to the constructor. ``format`` specifies the device component and
# ``option`` dictionary is specific to the specified component.
#
# The exact arguments to be passed depend on the system configuration.
# Please refer to https://ffmpeg.org/ffmpeg-devices.html for the detail.
#
# The following example illustrates how one can do this on MacBook Pro.
#
# First, we need to check the available devices.
#
# .. code::
#
# $ ffmpeg -f avfoundation -list_devices true -i ""
# [AVFoundation indev @ 0x143f04e50] AVFoundation video devices:
# [AVFoundation indev @ 0x143f04e50] [0] FaceTime HD Camera
# [AVFoundation indev @ 0x143f04e50] [1] Capture screen 0
# [AVFoundation indev @ 0x143f04e50] AVFoundation audio devices:
# [AVFoundation indev @ 0x143f04e50] [0] MacBook Pro Microphone
#
# We use `FaceTime HD Camera` as video device (index 0) and
# `MacBook Pro Microphone` as audio device (index 0).
#
# If we do not pass any ``option``, the device uses its default
# configuration. The decoder might not support the configuration.
#
# .. code::
#
# >>> StreamReader(
# ... src="0:0", # The first 0 means `FaceTime HD Camera`, and
# ... # the second 0 indicates `MacBook Pro Microphone`.
# ... format="avfoundation",
# ... )
# [avfoundation @ 0x125d4fe00] Selected framerate (29.970030) is not supported by the device.
# [avfoundation @ 0x125d4fe00] Supported modes:
# [avfoundation @ 0x125d4fe00] 1280x720@[1.000000 30.000000]fps
# [avfoundation @ 0x125d4fe00] 640x480@[1.000000 30.000000]fps
# Traceback (most recent call last):
# File "<stdin>", line 1, in <module>
# ...
# RuntimeError: Failed to open the input: 0:0
#
# By providing ``option``, we can change the format that the device
# streams to a format supported by decoder.
#
# .. code::
#
# >>> streamer = StreamReader(
# ... src="0:0",
# ... format="avfoundation",
# ... option={"framerate": "30", "pixel_format": "bgr0"},
# ... )
# >>> for i in range(streamer.num_src_streams):
# ... print(streamer.get_src_stream_info(i))
# SourceVideoStream(media_type='video', codec='rawvideo', codec_long_name='raw video', format='bgr0', bit_rate=0, width=640, height=480, frame_rate=30.0)
# SourceAudioStream(media_type='audio', codec='pcm_f32le', codec_long_name='PCM 32-bit floating point little-endian', format='flt', bit_rate=3072000, sample_rate=48000.0, num_channels=2)
#
######################################################################
# 2. Synthetic source streams
# ---------------------------
#
# As a part of device integration, ffmpeg provides a "virtual device"
# interface. This interface provides synthetic audio / video data
# generation using libavfilter.
#
# To use this, we set ``format=lavfi`` and provide a filter description
# to ``src``.
#
# The detail of filter description can be found at
# https://ffmpeg.org/ffmpeg-filters.html
#
######################################################################
# Synthetic audio examples
# ------------------------
#
######################################################################
# Sine wave
# ~~~~~~~~~
# https://ffmpeg.org/ffmpeg-filters.html#sine
#
# .. code::
#
# StreamReader(src="sine=sample_rate=8000:frequency=360", format="lavfi")
#
# .. raw:: html
#
# <audio controls>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/sine.wav">
# </audio>
# <img
# src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/sine.png"
# class="sphx-glr-single-img" style="width:80%">
#
######################################################################
# Generate an audio signal specified by an expression
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# https://ffmpeg.org/ffmpeg-filters.html#aevalsrc
#
# .. code::
#
# # 5 Hz binaural beats on a 360 Hz carrier
# StreamReader(
# src=(
# 'aevalsrc='
# 'sample_rate=8000:'
# 'exprs=0.1*sin(2*PI*(360-5/2)*t)|0.1*sin(2*PI*(360+5/2)*t)'
# ),
# format='lavfi',
# )
#
# .. raw:: html
#
# <audio controls>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/aevalsrc.wav">
# </audio>
# <img
# src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/aevalsrc.png"
# class="sphx-glr-single-img" style="width:80%">
#
######################################################################
# Noise
# ~~~~~
# https://ffmpeg.org/ffmpeg-filters.html#anoisesrc
#
# .. code::
#
# StreamReader(src="anoisesrc=color=pink:sample_rate=8000:amplitude=0.5", format="lavfi")
#
# .. raw:: html
#
# <audio controls>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/anoisesrc.wav">
# </audio>
# <img
# src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/anoisesrc.png"
# class="sphx-glr-single-img" style="width:80%">
#
######################################################################
# Synthetic video examples
# ------------------------
#
######################################################################
# Cellular automaton
# ~~~~~~~~~~~~~~~~~~
# https://ffmpeg.org/ffmpeg-filters.html#cellauto
#
# .. code::
#
# StreamReader(src=f"cellauto", format="lavfi")
#
# .. raw:: html
#
# <video controls autoplay loop muted>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/cellauto.mp4">
# </video>
#
######################################################################
# Mandelbrot
# ~~~~~~~~~~
# https://ffmpeg.org/ffmpeg-filters.html#cellauto
#
# .. code::
#
# StreamReader(src=f"mandelbrot", format="lavfi")
#
# .. raw:: html
#
# <video controls autoplay loop muted>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/mandelbrot.mp4">
# </video>
#
######################################################################
# MPlayer Test patterns
# ~~~~~~~~~~~~~~~~~~~~~
# https://ffmpeg.org/ffmpeg-filters.html#mptestsrc
#
# .. code::
#
# StreamReader(src=f"mptestsrc", format="lavfi")
#
# .. raw:: html
#
# <video controls autoplay loop muted width=192 height=192>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/mptestsrc.mp4">
# </video>
#
######################################################################
# John Conway's life game
# ~~~~~~~~~~~~~~~~~~~~~~~
# https://ffmpeg.org/ffmpeg-filters.html#life
#
# .. code::
#
# StreamReader(src=f"life", format="lavfi")
#
# .. raw:: html
#
# <video controls autoplay loop muted>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/life.mp4">
# </video>
#
######################################################################
# Sierpinski carpet/triangle fractal
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# https://ffmpeg.org/ffmpeg-filters.html#sierpinski
#
# .. code::
#
# StreamReader(src=f"sierpinski", format="lavfi")
#
# .. raw:: html
#
# <video controls autoplay loop muted>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/sierpinski.mp4">
# </video>
#
######################################################################
# 3. Custom output streams
# ------------------------
#
# When defining an output stream, you can use
# :py:meth:`~torchaudio.io.StreamReader.add_audio_stream` and
# :py:meth:`~torchaudio.io.StreamReader.add_video_stream` methods.
#
# These methods take ``filter_desc`` argument, which is a string
# formatted according to ffmpeg's
# `filter expression <https://ffmpeg.org/ffmpeg-filters.html>`_.
#
# The difference between ``add_basic_(audio|video)_stream`` and
# ``add_(audio|video)_stream`` is that ``add_basic_(audio|video)_stream``
# constructs the filter expression and passes it to the same underlying
# implementation. Everything ``add_basic_(audio|video)_stream`` can be
# achieved with ``add_(audio|video)_stream``.
#
# .. note::
#
# - When applying custom filters, the client code must convert
# the audio/video stream to one of the formats that torchaudio
# can convert to tensor format.
# This can be achieved, for example, by applying
# ``format=pix_fmts=rgb24`` to video stream and
# ``aformat=sample_fmts=fltp`` to audio stream.
# - Each output stream has separate filter graph. Therefore, it is
# not possible to use different input/output streams for a
# filter expression. However, it is possible to split one input
# stream into multiple of them, and merge them later.
#
######################################################################
# Custom audio streams
# --------------------
#
#
# fmt: off
descs = [
# No filtering
"anull",
# Apply a highpass filter then a lowpass filter
"highpass=f=200,lowpass=f=1000",
# Manipulate spectrogram
(
"afftfilt="
"real='hypot(re,im)*sin(0)':"
"imag='hypot(re,im)*cos(0)':"
"win_size=512:"
"overlap=0.75"
),
# Manipulate spectrogram
(
"afftfilt="
"real='hypot(re,im)*cos((random(0)*2-1)*2*3.14)':"
"imag='hypot(re,im)*sin((random(1)*2-1)*2*3.14)':"
"win_size=128:"
"overlap=0.8"
),
]
# fmt: on
######################################################################
#
sample_rate = 8000
streamer = StreamReader(AUDIO_URL)
for desc in descs:
streamer.add_audio_stream(
frames_per_chunk=40000,
filter_desc=f"aresample={sample_rate},{desc},aformat=sample_fmts=fltp",
)
chunks = next(streamer.stream())
def _display(i):
print("filter_desc:", streamer.get_out_stream_info(i).filter_description)
_, axs = plt.subplots(2, 1)
waveform = chunks[i][:, 0]
axs[0].plot(waveform)
axs[0].grid(True)
axs[0].set_ylim([-1, 1])
plt.setp(axs[0].get_xticklabels(), visible=False)
axs[1].specgram(waveform, Fs=sample_rate)
return IPython.display.Audio(chunks[i].T, rate=sample_rate)
######################################################################
# Original
# ~~~~~~~~
#
_display(0)
######################################################################
# Highpass / lowpass filter
# ~~~~~~~~~~~~~~~~~~~~~~~~~
#
_display(1)
######################################################################
# FFT filter - Robot 🤖
# ~~~~~~~~~~~~~~~~~~~~~
#
_display(2)
######################################################################
# FFT filter - Whisper
# ~~~~~~~~~~~~~~~~~~~~
#
_display(3)
######################################################################
# Custom video streams
# --------------------
#
# fmt: off
descs = [
# No effect
"null",
# Split the input stream and apply horizontal flip to the right half.
(
"split [main][tmp];"
"[tmp] crop=iw/2:ih:0:0, hflip [flip];"
"[main][flip] overlay=W/2:0"
),
# Edge detection
"edgedetect=mode=canny",
# Rotate image by randomly and fill the background with brown
"rotate=angle=-random(1)*PI:fillcolor=brown",
# Manipulate pixel values based on the coordinate
"geq=r='X/W*r(X,Y)':g='(1-X/W)*g(X,Y)':b='(H-Y)/H*b(X,Y)'"
]
# fmt: on
######################################################################
#
streamer = StreamReader(VIDEO_URL)
for desc in descs:
streamer.add_video_stream(
frames_per_chunk=30,
filter_desc=f"fps=10,{desc},format=pix_fmts=rgb24",
)
streamer.seek(12)
chunks = next(streamer.stream())
def _display(i):
print("filter_desc:", streamer.get_out_stream_info(i).filter_description)
_, axs = plt.subplots(1, 3, figsize=(8, 1.9))
chunk = chunks[i]
for j in range(3):
axs[j].imshow(chunk[10 * j + 1].permute(1, 2, 0))
axs[j].set_axis_off()
plt.tight_layout()
plt.show(block=False)
######################################################################
# Original
# ~~~~~~~~
_display(0)
######################################################################
# Mirror
# ~~~~~~
_display(1)
######################################################################
# Edge detection
# ~~~~~~~~~~~~~~~
_display(2)
######################################################################
# Random rotation
# ~~~~~~~~~~~~~~~
_display(3)
######################################################################
# Pixel manipulation
# ~~~~~~~~~~~~~~~~~~
_display(4)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment