Commit 1059c7ca authored by Jason Lian's avatar Jason Lian
Browse files

pre

parent 95803cf9
...@@ -2,6 +2,22 @@ import numpy as np ...@@ -2,6 +2,22 @@ import numpy as np
import torch import torch
__all__ = [
'scale',
'pad_trim',
'downmix_mono',
'LC2CL',
'spectrogram',
'create_fb_matrix',
'mel_scale',
'spectrogram_to_DB',
'create_dct',
'MFCC',
'BLC2CBL',
'mu_law_encoding',
'mu_law_expanding'
]
def scale(tensor, factor): def scale(tensor, factor):
# type: (Tensor, int) -> Tensor # type: (Tensor, int) -> Tensor
"""Scale audio tensor from a 16-bit integer (represented as a FloatTensor) """Scale audio tensor from a 16-bit integer (represented as a FloatTensor)
...@@ -34,7 +50,6 @@ def pad_trim(tensor, ch_dim, max_len, len_dim, fill_value): ...@@ -34,7 +50,6 @@ def pad_trim(tensor, ch_dim, max_len, len_dim, fill_value):
Outputs: Outputs:
Tensor: Padded/trimmed tensor Tensor: Padded/trimmed tensor
""" """
assert tensor.size(ch_dim) < 128, \ assert tensor.size(ch_dim) < 128, \
"Too many channels ({}) detected, see channels_first param.".format(tensor.size(ch_dim)) "Too many channels ({}) detected, see channels_first param.".format(tensor.size(ch_dim))
...@@ -316,7 +331,7 @@ def mu_law_encoding(x, qc): ...@@ -316,7 +331,7 @@ def mu_law_encoding(x, qc):
return x_mu return x_mu
def mu_law_expanding(x, qc): def mu_law_expanding(x_mu, qc):
# type: (Tensor/ndarray, int) -> Tensor/ndarray # type: (Tensor/ndarray, int) -> Tensor/ndarray
"""Decode mu-law encoded signal. For more info see the """Decode mu-law encoded signal. For more info see the
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
...@@ -325,7 +340,7 @@ def mu_law_expanding(x, qc): ...@@ -325,7 +340,7 @@ def mu_law_expanding(x, qc):
and returns a signal scaled between -1 and 1. and returns a signal scaled between -1 and 1.
Inputs: Inputs:
x (Tensor): Input tensor x_mu (Tensor): Input tensor
qc (int): Number of channels (i.e. quantization channels) qc (int): Number of channels (i.e. quantization channels)
Outputs: Outputs:
......
...@@ -2,8 +2,7 @@ from __future__ import division, print_function ...@@ -2,8 +2,7 @@ from __future__ import division, print_function
from warnings import warn from warnings import warn
import torch import torch
import numpy as np import numpy as np
import functional as F from . import functional as F
class Compose(object): class Compose(object):
"""Composes several transforms together. """Composes several transforms together.
...@@ -58,7 +57,7 @@ class Scale(object): ...@@ -58,7 +57,7 @@ class Scale(object):
Tensor: Scaled by the scale factor. (default between -1.0 and 1.0) Tensor: Scaled by the scale factor. (default between -1.0 and 1.0)
""" """
return F.scale(tensor, factor) return F.scale(tensor, self.factor)
def __repr__(self): def __repr__(self):
return self.__class__.__name__ + '()' return self.__class__.__name__ + '()'
...@@ -409,7 +408,7 @@ class MuLawEncoding(object): ...@@ -409,7 +408,7 @@ class MuLawEncoding(object):
x_mu (LongTensor or ndarray) x_mu (LongTensor or ndarray)
""" """
return self.mu_law_encoding(x, self.qc) return F.mu_law_encoding(x, self.qc)
def __repr__(self): def __repr__(self):
return self.__class__.__name__ + '()' return self.__class__.__name__ + '()'
...@@ -440,7 +439,7 @@ class MuLawExpanding(object): ...@@ -440,7 +439,7 @@ class MuLawExpanding(object):
x (FloatTensor or ndarray) x (FloatTensor or ndarray)
""" """
return F.mu_law_expanding(x, self.qc) return F.mu_law_expanding(x_mu, self.qc)
def __repr__(self): def __repr__(self):
return self.__class__.__name__ + '()' return self.__class__.__name__ + '()'
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment