-
Zhaoheng Ni authored
Summary: following pr https://github.com/pytorch/audio/issues/2716 - For preprocessing - The HuBERT feature takes lots of memory which may not fit some machines. Enable to use a subset of feature for training a k-means model. - For pre-training - Normalize the loss based on the total number of masked frames across all GPUs. - Use mixed precision training. fp16 is not well supported in pytorch_lightning. - Log accuracies of masked/unmasked frames during training. - Clip the gradients with norm `10.0`. - For ASR fine-tuning - Normalize the loss based on the total number of batches across all GPUs, same as in the conformer recipe of TorchAudio. - Use mixed precision training. - Add "|" after the end of transcription to capture the silence/word termination, same as in fairseq recipe. - Update the WER results on LibriSpeech dev and test sets. | | WER% (Viterbi)| WER% (KenLM) | |:-----------------:|--------------:|--------------:| | dev-clean | 10.9 | 4.2 | | dev-other | 17.5 | 9.4 | | test-clean | 10.9 | 4.4 | | test-other | 17.8 | 9.5 | Pull Request resolved: https://github.com/pytorch/audio/pull/2744 Reviewed By: carolineechen Differential Revision: D40282322 Pulled By: nateanl fbshipit-source-id: 4723584c912e70e8970149fe09de005385eaab90
928248d7