audio_datasets_tutorial.py 1.72 KB
Newer Older
1
2
3
4
"""
Audio Datasets
==============

5
6
**Author**: `Moto Hira <moto@meta.com>`__

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
``torchaudio`` provides easy access to common, publicly accessible
datasets. Please refer to the official documentation for the list of
available datasets.
"""

import torch
import torchaudio

print(torch.__version__)
print(torchaudio.__version__)

######################################################################
#

import os

mayp777's avatar
UPDATE  
mayp777 committed
23
24
import IPython

25
26
27
28
29
30
31
import matplotlib.pyplot as plt


_SAMPLE_DIR = "_assets"
YESNO_DATASET_PATH = os.path.join(_SAMPLE_DIR, "yes_no")
os.makedirs(YESNO_DATASET_PATH, exist_ok=True)

32

mayp777's avatar
UPDATE  
mayp777 committed
33
def plot_specgram(waveform, sample_rate, title="Spectrogram"):
34
35
    waveform = waveform.numpy()

mayp777's avatar
UPDATE  
mayp777 committed
36
37
    figure, ax = plt.subplots()
    ax.specgram(waveform[0], Fs=sample_rate)
38
    figure.suptitle(title)
mayp777's avatar
UPDATE  
mayp777 committed
39
    figure.tight_layout()
40
41
42


######################################################################
43
# Here, we show how to use the
44
# :py:class:`torchaudio.datasets.YESNO` dataset.
45
46
47
48
#

dataset = torchaudio.datasets.YESNO(YESNO_DATASET_PATH, download=True)

mayp777's avatar
UPDATE  
mayp777 committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
######################################################################
#
i = 1
waveform, sample_rate, label = dataset[i]
plot_specgram(waveform, sample_rate, title=f"Sample {i}: {label}")
IPython.display.Audio(waveform, rate=sample_rate)

######################################################################
#
i = 3
waveform, sample_rate, label = dataset[i]
plot_specgram(waveform, sample_rate, title=f"Sample {i}: {label}")
IPython.display.Audio(waveform, rate=sample_rate)

######################################################################
#
i = 5
waveform, sample_rate, label = dataset[i]
plot_specgram(waveform, sample_rate, title=f"Sample {i}: {label}")
IPython.display.Audio(waveform, rate=sample_rate)