inference.py 6.62 KB
Newer Older
mayp777's avatar
UPDATE  
mayp777 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import argparse
import logging
import time

import sentencepiece as spm
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
from torchaudio.models.decoder import ctc_decoder, cuda_ctc_decoder

logger = logging.getLogger(__name__)


def collate_wrapper(batch):
    speeches, labels = [], []
    for (speech, _, label, _, _, _) in batch:
        speeches.append(speech)
        labels.append(label.strip().lower().strip())
    return speeches, labels


def run_inference(args):
    device = torch.device("cuda", 0)
    model = torch.jit.load(args.model)
    model.to(device)
    model.eval()

    bpe_model = spm.SentencePieceProcessor()
    bpe_model.load(args.bpe_model)
    vocabs = [bpe_model.id_to_piece(id) for id in range(bpe_model.get_piece_size())]
    if args.using_cpu_decoder:
        cpu_decoder = ctc_decoder(
            lexicon=None,
            tokens=vocabs,
            lm=None,
            nbest=args.nbest,
            beam_size=args.beam_size,
            beam_size_token=args.beam_size_token,
            beam_threshold=args.beam_threshold,
            blank_token="<blk>",
            sil_token="<blk>",
        )
    else:
        assert vocabs[0] == "<blk>", "idx of blank token has to be zero"

        cuda_decoder = cuda_ctc_decoder(
            vocabs, nbest=args.nbest, beam_size=args.beam_size, blank_skip_threshold=args.blank_skip_threshold
        )

    dataset = torchaudio.datasets.LIBRISPEECH(args.librispeech_path, url=args.split, download=True)

    total_edit_distance, oracle_edit_distance, total_length = 0, 0, 0

    data_loader = DataLoader(
        dataset, batch_size=args.batch_size, num_workers=4, pin_memory=True, collate_fn=collate_wrapper
    )

    decoding_duration = 0
    for idx, batch in enumerate(data_loader):
        waveforms, transcripts = batch
        waveforms = [wave.to(device) for wave in waveforms]
        features = [torchaudio.compliance.kaldi.fbank(wave, num_mel_bins=80, snip_edges=False) for wave in waveforms]
        feature_lengths = [f.size(0) for f in features]

        features = pad_sequence(features, batch_first=True, padding_value=torch.log(torch.tensor(1e-10)))
        feature_lengths = torch.tensor(feature_lengths, device=device)

        encoder_out, encoder_out_lens = model.encoder(
            x=features,
            x_lens=feature_lengths,
        )
        nnet_output = model.ctc_output(encoder_out)
        log_prob = torch.nn.functional.log_softmax(nnet_output, -1)

        decoding_start = time.perf_counter()
        preds = []
        if args.using_cpu_decoder:
            results = cpu_decoder(log_prob.cpu())
            duration = time.perf_counter() - decoding_start
            for i in range(len(results)):
                ith_preds = bpe_model.decode([results[i][j].tokens.tolist() for j in range(len(results[i]))])
                ith_preds = [pred.lower().split() for pred in ith_preds]
                preds.append(ith_preds)
        else:
            results = cuda_decoder(log_prob, encoder_out_lens.to(torch.int32))
            duration = time.perf_counter() - decoding_start
            for i in range(len(results)):
                ith_preds = bpe_model.decode([results[i][j].tokens for j in range(len(results[i]))])
                ith_preds = [pred.lower().split() for pred in ith_preds]
                preds.append(ith_preds)
        decoding_duration += duration

        for transcript, nbest_pred in zip(transcripts, preds):
            total_edit_distance += torchaudio.functional.edit_distance(transcript.split(), nbest_pred[0])
            oracle_edit_distance += min(
                [torchaudio.functional.edit_distance(transcript.split(), nbest_pred[i]) for i in range(len(nbest_pred))]
            )
            total_length += len(transcript.split())

        if idx % 10 == 0:
            logger.info(
                f"Processed elem {idx}; "
                f"WER: {total_edit_distance / total_length}, "
                f"Oracle WER: {oracle_edit_distance / total_length}, ",
                f"decoding time for batch size {args.batch_size}: {duration}",
            )

    logger.info(
        f"Final WER: {total_edit_distance / total_length}, ",
        f"Oracle WER: {oracle_edit_distance / total_length}, ",
        f"time for decoding {decoding_duration} [sec].",
    )


def _parse_args():
    parser = argparse.ArgumentParser(
        description=__doc__,
        formatter_class=argparse.RawTextHelpFormatter,
    )
    parser.add_argument(
        "--librispeech_path",
        type=str,
        help="folder where LibriSpeech is stored",
        default="./librispeech",
    )
    parser.add_argument(
        "--split",
        type=str,
        help="LibriSpeech dataset split",
        choices=["dev-clean", "dev-other", "test-clean", "test-other"],
        default="test-other",
    )
    parser.add_argument(
        "--model",
        type=str,
        default="./cpu_jit.pt",
        help="pretrained ASR model using CTC loss",
    )
    parser.add_argument(
        "--bpe-model",
        type=str,
        default="./bpe.model",
        help="bpe file for pretrained ASR model",
    )
    parser.add_argument(
        "--nbest",
        type=int,
        default=10,
        help="number of best hypotheses to return",
    )
    parser.add_argument(
        "--beam-size",
        type=int,
        default=10,
        help="beam size for determining number of hypotheses to store",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=4,
        help="batch size for decoding",
    )
    parser.add_argument(
        "--blank-skip-threshold",
        type=float,
        default=0.95,
        help="skip frames where prob_blank > 0.95, https://ieeexplore.ieee.org/document/7736093",
    )
    parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging")
    # cpu decoder specific parameters
    parser.add_argument("--using-cpu-decoder", action="store_true", help="whether to use flashlight cpu ctc decoder")
    parser.add_argument("--beam-threshold", type=int, default=50, help="beam threshold for pruning hypotheses")
    parser.add_argument(
        "--beam-size-token",
        type=int,
        default=None,
        help="number of tokens to consider at each beam search step",
    )
    return parser.parse_args()


def _init_logger(debug):
    fmt = "%(asctime)s %(message)s" if debug else "%(message)s"
    level = logging.DEBUG if debug else logging.INFO
    logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S")


def _main():
    args = _parse_args()
    _init_logger(args.debug)
    run_inference(args)


if __name__ == "__main__":
    _main()