train.py 3.07 KB
Newer Older
mayp777's avatar
UPDATE  
mayp777 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import pathlib
from argparse import ArgumentParser

import sentencepiece as spm

from lightning import ConformerRNNTModule
from pytorch_lightning import seed_everything, Trainer
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.strategies import DDPStrategy
from transforms import get_data_module


def run_train(args):
    seed_everything(1)
    checkpoint_dir = args.exp_dir / "checkpoints"
    checkpoint = ModelCheckpoint(
        checkpoint_dir,
        monitor="Losses/val_loss",
        mode="min",
        save_top_k=5,
        save_weights_only=False,
        verbose=True,
    )
    train_checkpoint = ModelCheckpoint(
        checkpoint_dir,
        monitor="Losses/train_loss",
        mode="min",
        save_top_k=5,
        save_weights_only=False,
        verbose=True,
    )
    lr_monitor = LearningRateMonitor(logging_interval="step")
    callbacks = [
        checkpoint,
        train_checkpoint,
        lr_monitor,
    ]
    trainer = Trainer(
        default_root_dir=args.exp_dir,
        max_epochs=args.epochs,
        num_nodes=args.nodes,
        devices=args.gpus,
        accelerator="gpu",
        strategy=DDPStrategy(find_unused_parameters=False),
        callbacks=callbacks,
        reload_dataloaders_every_n_epochs=1,
        gradient_clip_val=10.0,
    )

    sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path))
    model = ConformerRNNTModule(sp_model)
    data_module = get_data_module(str(args.librispeech_path), str(args.global_stats_path), str(args.sp_model_path))
    trainer.fit(model, data_module, ckpt_path=args.checkpoint_path)


def cli_main():
    parser = ArgumentParser()
    parser.add_argument(
        "--checkpoint-path",
        default=None,
        type=pathlib.Path,
        help="Path to checkpoint to use for evaluation.",
    )
    parser.add_argument(
        "--exp-dir",
        default=pathlib.Path("./exp"),
        type=pathlib.Path,
        help="Directory to save checkpoints and logs to. (Default: './exp')",
    )
    parser.add_argument(
        "--global-stats-path",
        default=pathlib.Path("global_stats.json"),
        type=pathlib.Path,
        help="Path to JSON file containing feature means and stddevs.",
    )
    parser.add_argument(
        "--librispeech-path",
        type=pathlib.Path,
        help="Path to LibriSpeech datasets.",
        required=True,
    )
    parser.add_argument(
        "--sp-model-path",
        type=pathlib.Path,
        help="Path to SentencePiece model.",
        required=True,
    )
    parser.add_argument(
        "--nodes",
        default=4,
        type=int,
        help="Number of nodes to use for training. (Default: 4)",
    )
    parser.add_argument(
        "--gpus",
        default=8,
        type=int,
        help="Number of GPUs per node to use for training. (Default: 8)",
    )
    parser.add_argument(
        "--epochs",
        default=120,
        type=int,
        help="Number of epochs to train for. (Default: 120)",
    )
    args = parser.parse_args()
    run_train(args)


if __name__ == "__main__":
    cli_main()