eval.py 2.26 KB
Newer Older
mayp777's avatar
UPDATE  
mayp777 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import logging
import pathlib
from argparse import ArgumentParser

import sentencepiece as spm

import torch
import torchaudio
from lightning import ConformerRNNTModule
from transforms import get_data_module


logger = logging.getLogger()


def compute_word_level_distance(seq1, seq2):
    return torchaudio.functional.edit_distance(seq1.lower().split(), seq2.lower().split())


def run_eval(args):
    sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path))
    model = ConformerRNNTModule.load_from_checkpoint(args.checkpoint_path, sp_model=sp_model).eval()
    data_module = get_data_module(str(args.librispeech_path), str(args.global_stats_path), str(args.sp_model_path))

    if args.use_cuda:
        model = model.to(device="cuda")

    total_edit_distance = 0
    total_length = 0
    dataloader = data_module.test_dataloader()
    with torch.no_grad():
        for idx, (batch, sample) in enumerate(dataloader):
            actual = sample[0][2]
            predicted = model(batch)
            total_edit_distance += compute_word_level_distance(actual, predicted)
            total_length += len(actual.split())
            if idx % 100 == 0:
                logger.warning(f"Processed elem {idx}; WER: {total_edit_distance / total_length}")
    logger.warning(f"Final WER: {total_edit_distance / total_length}")


def cli_main():
    parser = ArgumentParser()
    parser.add_argument(
        "--checkpoint-path",
        type=pathlib.Path,
        help="Path to checkpoint to use for evaluation.",
        required=True,
    )
    parser.add_argument(
        "--global-stats-path",
        default=pathlib.Path("global_stats.json"),
        type=pathlib.Path,
        help="Path to JSON file containing feature means and stddevs.",
    )
    parser.add_argument(
        "--librispeech-path",
        type=pathlib.Path,
        help="Path to LibriSpeech datasets.",
        required=True,
    )
    parser.add_argument(
        "--sp-model-path",
        type=pathlib.Path,
        help="Path to SentencePiece model.",
        required=True,
    )
    parser.add_argument(
        "--use-cuda",
        action="store_true",
        default=False,
        help="Run using CUDA.",
    )
    args = parser.parse_args()
    run_eval(args)


if __name__ == "__main__":
    cli_main()