"server/vscode:/vscode.git/clone" did not exist on "0e8b47811e711b46fe80e6b4f5304186f83744d6"
test_transforms.py 2.68 KB
Newer Older
David Pollack's avatar
David Pollack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torchaudio
import torchaudio.transforms as transforms
import numpy as np
import unittest

STEAM_TRAIN = "assets/steam-train-whistle-daniel_simon.mp3"

class Tester(unittest.TestCase):

    sr = 16000
    freq = 440
    volume = 0.3
    sig = (torch.cos(2*np.pi*torch.arange(0, 4*sr) * freq/sr)).float()
    sig.unsqueeze_(1)
    sig = (sig*volume*2**31).long()

    def test_scale(self):

        audio_orig = self.sig.clone()
        result = transforms.Scale()(audio_orig)
        self.assertTrue(result.min() >= -1. and result.max() <= 1.,
                        "min: {}, max: {}".format(result.min(), result.max()))

        maxminmax = np.abs([audio_orig.min(), audio_orig.max()]).max().astype(np.float)
        result = transforms.Scale(factor=maxminmax)(audio_orig)
        self.assertTrue((result.min() == -1. or result.max() == 1.) and
                        result.min() >= -1. and result.max() <= 1.,
                        "min: {}, max: {}".format(result.min(), result.max()))

    def test_pad_trim(self):

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 1.2)

        result = transforms.PadTrim(max_len=length_new)(audio_orig)

        self.assertTrue(result.size(0) == length_new,
                        "old size: {}, new size: {}".format(audio_orig.size(0), result.size(0)))

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 0.8)

        result = transforms.PadTrim(max_len=length_new)(audio_orig)

        self.assertTrue(result.size(0) == length_new,
                        "old size: {}, new size: {}".format(audio_orig.size(0), result.size(0)))


    def test_downmix_mono(self):
David Pollack's avatar
David Pollack committed
53

David Pollack's avatar
David Pollack committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        audio_L = self.sig.clone()
        audio_R = self.sig.clone()
        R_idx = int(audio_R.size(0) * 0.1)
        audio_R = torch.cat((audio_R[R_idx:], audio_R[:R_idx]))

        audio_Stereo = torch.cat((audio_L, audio_R), dim=1)

        self.assertTrue(audio_Stereo.size(1) == 2)

        result = transforms.DownmixMono()(audio_Stereo)

        self.assertTrue(result.size(1) == 1)

    def test_compose(self):

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 1.2)
        maxminmax = np.abs([audio_orig.min(), audio_orig.max()]).max().astype(np.float)

        tset = (transforms.Scale(factor=maxminmax),
                transforms.PadTrim(max_len=length_new))
        result = transforms.Compose(tset)(audio_orig)

        self.assertTrue(np.abs([result.min(), result.max()]).max() == 1.)

        self.assertTrue(result.size(0) == length_new)


if __name__ == '__main__':
    unittest.main()