audio_io_tutorial.py 12.6 KB
Newer Older
1
2
3
4
5
# -*- coding: utf-8 -*-
"""
Audio I/O
=========

6
7
**Author**: `Moto Hira <moto@meta.com>`__

moto's avatar
moto committed
8
9
This tutorial shows how to use TorchAudio's basic I/O API to load audio files
into PyTorch's Tensor object, and save Tensor objects to audio files.
10
11
12
13
14
15
16
17
18
"""

import torch
import torchaudio

print(torch.__version__)
print(torchaudio.__version__)

######################################################################
moto's avatar
moto committed
19
20
# Preparation
# -----------
21
#
moto's avatar
moto committed
22
23
24
25
26
27
28
29
30
# First, we import the modules and download the audio assets we use in this tutorial.
#
# .. note::
#    When running this tutorial in Google Colab, install the required packages
#    with the following:
#
#    .. code::
#
#       !pip install boto3
31
32
33
34

import io
import os
import tarfile
moto's avatar
moto committed
35
import tempfile
36
37

import boto3
38
39
import matplotlib.pyplot as plt
import requests
40
41
from botocore import UNSIGNED
from botocore.config import Config
moto's avatar
moto committed
42
43
from IPython.display import Audio
from torchaudio.utils import download_asset
44

moto's avatar
moto committed
45
46
47
SAMPLE_GSM = download_asset("tutorial-assets/steam-train-whistle-daniel_simon.gsm")
SAMPLE_WAV = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")
SAMPLE_WAV_8000 = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042-8000hz.wav")
48

49
50
51


######################################################################
52
53
# Querying audio metadata
# -----------------------
54
#
55
56
# Function :py:func:`torchaudio.info` fetches audio metadata.
# You can provide a path-like object or file-like object.
57
58
#

moto's avatar
moto committed
59
metadata = torchaudio.info(SAMPLE_WAV)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
print(metadata)

######################################################################
# Where
#
# -  ``sample_rate`` is the sampling rate of the audio
# -  ``num_channels`` is the number of channels
# -  ``num_frames`` is the number of frames per channel
# -  ``bits_per_sample`` is bit depth
# -  ``encoding`` is the sample coding format
#
# ``encoding`` can take on one of the following values:
#
# -  ``"PCM_S"``: Signed integer linear PCM
# -  ``"PCM_U"``: Unsigned integer linear PCM
# -  ``"PCM_F"``: Floating point linear PCM
# -  ``"FLAC"``: Flac, `Free Lossless Audio
#    Codec <https://xiph.org/flac/>`__
# -  ``"ULAW"``: Mu-law,
#    [`wikipedia <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`__]
# -  ``"ALAW"``: A-law
#    [`wikipedia <https://en.wikipedia.org/wiki/A-law_algorithm>`__]
# -  ``"MP3"`` : MP3, MPEG-1 Audio Layer III
# -  ``"VORBIS"``: OGG Vorbis [`xiph.org <https://xiph.org/vorbis/>`__]
# -  ``"AMR_NB"``: Adaptive Multi-Rate
#    [`wikipedia <https://en.wikipedia.org/wiki/Adaptive_Multi-Rate_audio_codec>`__]
# -  ``"AMR_WB"``: Adaptive Multi-Rate Wideband
#    [`wikipedia <https://en.wikipedia.org/wiki/Adaptive_Multi-Rate_Wideband>`__]
# -  ``"OPUS"``: Opus [`opus-codec.org <https://opus-codec.org/>`__]
# -  ``"GSM"``: GSM-FR
#    [`wikipedia <https://en.wikipedia.org/wiki/Full_Rate>`__]
moto's avatar
moto committed
91
# -  ``"HTK"``: Single channel 16-bit PCM
92
93
94
95
96
97
98
99
100
101
# -  ``"UNKNOWN"`` None of above
#

######################################################################
# **Note**
#
# -  ``bits_per_sample`` can be ``0`` for formats with compression and/or
#    variable bit rate (such as MP3).
# -  ``num_frames`` can be ``0`` for GSM-FR format.
#
moto's avatar
moto committed
102
103
104
105

metadata = torchaudio.info(SAMPLE_GSM)
print(metadata)

106
107
108

######################################################################
# Querying file-like object
moto's avatar
moto committed
109
# -------------------------
110
#
111
# :py:func:`torchaudio.info` works on file-like objects.
112
113
#

moto's avatar
moto committed
114
115
url = "https://download.pytorch.org/torchaudio/tutorial-assets/steam-train-whistle-daniel_simon.wav"
with requests.get(url, stream=True) as response:
116
    metadata = torchaudio.info(response.raw)
117
118
119
print(metadata)

######################################################################
moto's avatar
moto committed
120
# .. note::
121
#
moto's avatar
moto committed
122
123
124
125
126
127
#    When passing a file-like object, ``info`` does not read
#    all of the underlying data; rather, it reads only a portion
#    of the data from the beginning.
#    Therefore, for a given audio format, it may not be able to retrieve the
#    correct metadata, including the format itself. In such case, you
#    can pass ``format`` argument to specify the format of the audio.
128
129

######################################################################
moto's avatar
moto committed
130
131
# Loading audio data
# ------------------
132
#
133
# To load audio data, you can use :py:func:`torchaudio.load`.
134
135
136
137
138
139
140
#
# This function accepts a path-like object or file-like object as input.
#
# The returned value is a tuple of waveform (``Tensor``) and sample rate
# (``int``).
#
# By default, the resulting tensor object has ``dtype=torch.float32`` and
moto's avatar
moto committed
141
# its value range is ``[-1.0, 1.0]``.
142
143
144
145
146
#
# For the list of supported format, please refer to `the torchaudio
# documentation <https://pytorch.org/audio>`__.
#

moto's avatar
moto committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
waveform, sample_rate = torchaudio.load(SAMPLE_WAV)


######################################################################
#
def plot_waveform(waveform, sample_rate):
    waveform = waveform.numpy()

    num_channels, num_frames = waveform.shape
    time_axis = torch.arange(0, num_frames) / sample_rate

    figure, axes = plt.subplots(num_channels, 1)
    if num_channels == 1:
        axes = [axes]
    for c in range(num_channels):
        axes[c].plot(time_axis, waveform[c], linewidth=1)
        axes[c].grid(True)
        if num_channels > 1:
            axes[c].set_ylabel(f"Channel {c+1}")
    figure.suptitle("waveform")
    plt.show(block=False)

169

moto's avatar
moto committed
170
171
######################################################################
#
172
plot_waveform(waveform, sample_rate)
moto's avatar
moto committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194


######################################################################
#
def plot_specgram(waveform, sample_rate, title="Spectrogram"):
    waveform = waveform.numpy()

    num_channels, num_frames = waveform.shape

    figure, axes = plt.subplots(num_channels, 1)
    if num_channels == 1:
        axes = [axes]
    for c in range(num_channels):
        axes[c].specgram(waveform[c], Fs=sample_rate)
        if num_channels > 1:
            axes[c].set_ylabel(f"Channel {c+1}")
    figure.suptitle(title)
    plt.show(block=False)


######################################################################
#
195
196
197
plot_specgram(waveform, sample_rate)


moto's avatar
moto committed
198
199
200
201
######################################################################
#
Audio(waveform.numpy()[0], rate=sample_rate)

202
203
######################################################################
# Loading from file-like object
moto's avatar
moto committed
204
# -----------------------------
205
#
moto's avatar
moto committed
206
207
# The I/O functions support file-like objects.
# This allows for fetching and decoding audio data from locations
208
209
210
211
# within and beyond the local file system.
# The following examples illustrate this.
#

moto's avatar
moto committed
212
213
214
######################################################################
#

215
# Load audio data as HTTP request
moto's avatar
moto committed
216
217
url = "https://download.pytorch.org/torchaudio/tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
with requests.get(url, stream=True) as response:
218
    waveform, sample_rate = torchaudio.load(response.raw)
219
220
plot_specgram(waveform, sample_rate, title="HTTP datasource")

moto's avatar
moto committed
221
222
223
######################################################################
#

224
# Load audio from tar file
moto's avatar
moto committed
225
226
227
228
tar_path = download_asset("tutorial-assets/VOiCES_devkit.tar.gz")
tar_item = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
with tarfile.open(tar_path, mode="r") as tarfile_:
    fileobj = tarfile_.extractfile(tar_item)
229
    waveform, sample_rate = torchaudio.load(fileobj)
230
231
plot_specgram(waveform, sample_rate, title="TAR file")

moto's avatar
moto committed
232
233
234
######################################################################
#

235
# Load audio from S3
moto's avatar
moto committed
236
237
bucket = "pytorch-tutorial-assets"
key = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
238
client = boto3.client("s3", config=Config(signature_version=UNSIGNED))
moto's avatar
moto committed
239
response = client.get_object(Bucket=bucket, Key=key)
240
waveform, sample_rate = torchaudio.load(response["Body"])
241
242
243
244
245
plot_specgram(waveform, sample_rate, title="From S3")


######################################################################
# Tips on slicing
moto's avatar
moto committed
246
# ---------------
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#
# Providing ``num_frames`` and ``frame_offset`` arguments restricts
# decoding to the corresponding segment of the input.
#
# The same result can be achieved using vanilla Tensor slicing,
# (i.e. ``waveform[:, frame_offset:frame_offset+num_frames]``). However,
# providing ``num_frames`` and ``frame_offset`` arguments is more
# efficient.
#
# This is because the function will end data acquisition and decoding
# once it finishes decoding the requested frames. This is advantageous
# when the audio data are transferred via network as the data transfer will
# stop as soon as the necessary amount of data is fetched.
#
# The following example illustrates this.
#

# Illustration of two different decoding methods.
# The first one will fetch all the data and decode them, while
# the second one will stop fetching data once it completes decoding.
# The resulting waveforms are identical.

frame_offset, num_frames = 16000, 16000  # Fetch and decode the 1 - 2 seconds

moto's avatar
moto committed
271
url = "https://download.pytorch.org/torchaudio/tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
272
print("Fetching all the data...")
moto's avatar
moto committed
273
with requests.get(url, stream=True) as response:
274
    waveform1, sample_rate1 = torchaudio.load(response.raw)
275
    waveform1 = waveform1[:, frame_offset : frame_offset + num_frames]
276
    print(f" - Fetched {response.raw.tell()} bytes")
277
278

print("Fetching until the requested frames are available...")
moto's avatar
moto committed
279
with requests.get(url, stream=True) as response:
280
    waveform2, sample_rate2 = torchaudio.load(response.raw, frame_offset=frame_offset, num_frames=num_frames)
281
    print(f" - Fetched {response.raw.tell()} bytes")
282
283
284
285
286
287
288
289
290
291

print("Checking the resulting waveform ... ", end="")
assert (waveform1 == waveform2).all()
print("matched!")

######################################################################
# Saving audio to file
# --------------------
#
# To save audio data in formats interpretable by common applications,
292
# you can use :py:func:`torchaudio.save`.
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#
# This function accepts a path-like object or file-like object.
#
# When passing a file-like object, you also need to provide argument ``format``
# so that the function knows which format it should use. In the
# case of a path-like object, the function will infer the format from
# the extension. If you are saving to a file without an extension, you need
# to provide argument ``format``.
#
# When saving WAV-formatted data, the default encoding for ``float32`` Tensor
# is 32-bit floating-point PCM. You can provide arguments ``encoding`` and
# ``bits_per_sample`` to change this behavior. For example, to save data
# in 16-bit signed integer PCM, you can do the following.
#
moto's avatar
moto committed
307
308
# .. note::
#
moto's avatar
moto committed
309
310
#    Saving data in encodings with a lower bit depth reduces the
#    resulting file size but also precision.
311
312
#

moto's avatar
moto committed
313
314
waveform, sample_rate = torchaudio.load(SAMPLE_WAV)

315

moto's avatar
moto committed
316
317
######################################################################
#
318

moto's avatar
moto committed
319
320
321
322
323
324
325
326
327
328
def inspect_file(path):
    print("-" * 10)
    print("Source:", path)
    print("-" * 10)
    print(f" - File size: {os.path.getsize(path)} bytes")
    print(f" - {torchaudio.info(path)}")
    print()

######################################################################
#
329
330
331
# Save without any encoding option.
# The function will pick up the encoding which
# the provided data fit
moto's avatar
moto committed
332
333
334
335
with tempfile.TemporaryDirectory() as tempdir:
    path = f"{tempdir}/save_example_default.wav"
    torchaudio.save(path, waveform, sample_rate)
    inspect_file(path)
336

moto's avatar
moto committed
337
338
######################################################################
#
339
340
# Save as 16-bit signed integer Linear PCM
# The resulting file occupies half the storage but loses precision
moto's avatar
moto committed
341
342
343
344
with tempfile.TemporaryDirectory() as tempdir:
    path = f"{tempdir}/save_example_PCM_S16.wav"
    torchaudio.save(path, waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
    inspect_file(path)
345
346
347


######################################################################
moto's avatar
moto committed
348
# :py:func:`torchaudio.save` can also handle other formats.
349
# To name a few:
350
351
352
#

formats = [
353
354
355
356
357
358
    "flac",
    "vorbis",
    "sph",
    "amb",
    "amr-nb",
    "gsm",
359
360
]

moto's avatar
moto committed
361
362
363
364
365
366
367
368
######################################################################
#
waveform, sample_rate = torchaudio.load(SAMPLE_WAV_8000)
with tempfile.TemporaryDirectory() as tempdir:
    for format in formats:
        path = f"{tempdir}/save_example.{format}"
        torchaudio.save(path, waveform, sample_rate, format=format)
        inspect_file(path)
369
370
371

######################################################################
# Saving to file-like object
moto's avatar
moto committed
372
# --------------------------
373
374
375
376
377
378
379
#
# Similar to the other I/O functions, you can save audio to file-like
# objects. When saving to a file-like object, argument ``format`` is
# required.
#


moto's avatar
moto committed
380
waveform, sample_rate = torchaudio.load(SAMPLE_WAV)
381
382
383
384
385
386
387

# Saving to bytes buffer
buffer_ = io.BytesIO()
torchaudio.save(buffer_, waveform, sample_rate, format="wav")

buffer_.seek(0)
print(buffer_.read(16))