test_torchscript.py 3.24 KB
Newer Older
moto's avatar
moto committed
1
2
3
4
5
6
7
8
9
10
11
12
13
from typing import List

import torch
from torchaudio import sox_effects
from parameterized import parameterized

from ..common_utils import (
    TempDirMixin,
    PytorchTestCase,
    skipIfNoExtension,
    get_sinusoid,
    save_wav,
)
14
15
16
from .common import (
    load_params,
)
moto's avatar
moto committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


class SoxEffectTensorTransform(torch.nn.Module):
    effects: List[List[str]]

    def __init__(self, effects: List[List[str]], sample_rate: int, channels_first: bool):
        super().__init__()
        self.effects = effects
        self.sample_rate = sample_rate
        self.channels_first = channels_first

    def forward(self, tensor: torch.Tensor):
        return sox_effects.apply_effects_tensor(
            tensor, self.sample_rate, self.effects, self.channels_first)


class SoxEffectFileTransform(torch.nn.Module):
    effects: List[List[str]]
    channels_first: bool

    def __init__(self, effects: List[List[str]], channels_first: bool):
        super().__init__()
        self.effects = effects
        self.channels_first = channels_first

    def forward(self, path: str):
        return sox_effects.apply_effects_file(path, self.effects, self.channels_first)


@skipIfNoExtension
class TestTorchScript(TempDirMixin, PytorchTestCase):
    @parameterized.expand(
        load_params("sox_effect_test_args.json"),
        name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}',
    )
    def test_apply_effects_tensor(self, args):
        effects = args['effects']
        channels_first = True
        num_channels = args.get("num_channels", 2)
        input_sr = args.get("input_sample_rate", 8000)

        trans = SoxEffectTensorTransform(effects, input_sr, channels_first)

        path = self.get_temp_path('sox_effect.zip')
        torch.jit.script(trans).save(path)
        trans = torch.jit.load(path)

        wav = get_sinusoid(
            frequency=800, sample_rate=input_sr,
            n_channels=num_channels, dtype='float32', channels_first=channels_first)
        found, sr_found = trans(wav)
        expected, sr_expected = sox_effects.apply_effects_tensor(
            wav, input_sr, effects, channels_first)

        assert sr_found == sr_expected
        self.assertEqual(expected, found)

    @parameterized.expand(
        load_params("sox_effect_test_args.json"),
        name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}',
    )
    def test_apply_effects_file(self, args):
        effects = args['effects']
        channels_first = True
        num_channels = args.get("num_channels", 2)
        input_sr = args.get("input_sample_rate", 8000)

        trans = SoxEffectFileTransform(effects, channels_first)

        path = self.get_temp_path('sox_effect.zip')
        torch.jit.script(trans).save(path)
        trans = torch.jit.load(path)

        path = self.get_temp_path('input.wav')
        wav = get_sinusoid(
            frequency=800, sample_rate=input_sr,
            n_channels=num_channels, dtype='float32', channels_first=channels_first)
        save_wav(path, wav, sample_rate=input_sr, channels_first=channels_first)

        found, sr_found = trans(path)
        expected, sr_expected = sox_effects.apply_effects_file(path, effects, channels_first)

        assert sr_found == sr_expected
        self.assertEqual(expected, found)