test_jit.py 5.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torchaudio.functional as F
import torchaudio.transforms as transforms
import unittest

RUN_CUDA = torch.cuda.is_available()
print('Run test with cuda:', RUN_CUDA)


class Test_JIT(unittest.TestCase):
    def _get_script_module(self, f, *args):
        # takes a transform function `f` and wraps it in a script module
        class MyModule(torch.jit.ScriptModule):
            def __init__(self):
                super(MyModule, self).__init__()
                self.module = f(*args)
                self.module.eval()

            @torch.jit.script_method
            def forward(self, tensor):
                return self.module(tensor)

        return MyModule()

    def _test_script_module(self, tensor, f, *args):
        # tests a script module that wraps a transform function `f` by feeding
        # the tensor into the forward function
        jit_out = self._get_script_module(f, *args).cuda()(tensor)
        py_out = f(*args).cuda()(tensor)

        self.assertTrue(torch.allclose(jit_out, py_out))

    def test_torchscript_spectrogram(self):
        @torch.jit.script
        def jit_method(sig, pad, window, n_fft, hop, ws, power, normalize):
            # type: (Tensor, int, Tensor, int, int, int, int, bool) -> Tensor
            return F.spectrogram(sig, pad, window, n_fft, hop, ws, power, normalize)

        tensor = torch.rand((1, 1000))
        n_fft = 400
        ws = 400
        hop = 200
        pad = 0
        window = torch.hann_window(ws)
        power = 2
        normalize = False

        jit_out = jit_method(tensor, pad, window, n_fft, hop, ws, power, normalize)
        py_out = F.spectrogram(tensor, pad, window, n_fft, hop, ws, power, normalize)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_Spectrogram(self):
        tensor = torch.rand((1, 1000), device="cuda")

        self._test_script_module(tensor, transforms.Spectrogram)

    def test_torchscript_create_fb_matrix(self):
        @torch.jit.script
        def jit_method(n_stft, f_min, f_max, n_mels):
            # type: (int, float, float, int) -> Tensor
            return F.create_fb_matrix(n_stft, f_min, f_max, n_mels)

        n_stft = 100
        f_min = 0.
        f_max = 20.
        n_mels = 10

        jit_out = jit_method(n_stft, f_min, f_max, n_mels)
        py_out = F.create_fb_matrix(n_stft, f_min, f_max, n_mels)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MelScale(self):
        spec_f = torch.rand((1, 6, 201), device="cuda")

        self._test_script_module(spec_f, transforms.MelScale)

81
    def test_torchscript_amplitude_to_DB(self):
82
83
84
        @torch.jit.script
        def jit_method(spec, multiplier, amin, db_multiplier, top_db):
            # type: (Tensor, float, float, float, Optional[float]) -> Tensor
85
            return F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)
86

87
        spec = torch.rand((6, 201))
88
89
90
91
92
93
        multiplier = 10.
        amin = 1e-10
        db_multiplier = 0.
        top_db = 80.

        jit_out = jit_method(spec, multiplier, amin, db_multiplier, top_db)
94
        py_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)
95
96
97
98

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
99
    def test_scriptmodule_AmplitudeToDB(self):
100
        spec = torch.rand((6, 201), device="cuda")
101

102
        self._test_script_module(spec, transforms.AmplitudeToDB)
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    def test_torchscript_create_dct(self):
        @torch.jit.script
        def jit_method(n_mfcc, n_mels, norm):
            # type: (int, int, Optional[str]) -> Tensor
            return F.create_dct(n_mfcc, n_mels, norm)

        n_mfcc = 40
        n_mels = 128
        norm = 'ortho'

        jit_out = jit_method(n_mfcc, n_mels, norm)
        py_out = F.create_dct(n_mfcc, n_mels, norm)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MFCC(self):
        tensor = torch.rand((1, 1000), device="cuda")

        self._test_script_module(tensor, transforms.MFCC)

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MelSpectrogram(self):
        tensor = torch.rand((1, 1000), device="cuda")

        self._test_script_module(tensor, transforms.MelSpectrogram)

    def test_torchscript_mu_law_encoding(self):
        @torch.jit.script
        def jit_method(tensor, qc):
            # type: (Tensor, int) -> Tensor
            return F.mu_law_encoding(tensor, qc)

137
        tensor = torch.rand((1, 10))
138
139
140
141
142
143
144
145
146
        qc = 256

        jit_out = jit_method(tensor, qc)
        py_out = F.mu_law_encoding(tensor, qc)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MuLawEncoding(self):
147
        tensor = torch.rand((1, 10), device="cuda")
148
149
150

        self._test_script_module(tensor, transforms.MuLawEncoding)

151
    def test_torchscript_mu_law_decoding(self):
152
153
154
        @torch.jit.script
        def jit_method(tensor, qc):
            # type: (Tensor, int) -> Tensor
155
            return F.mu_law_decoding(tensor, qc)
156

157
        tensor = torch.rand((1, 10))
158
159
160
        qc = 256

        jit_out = jit_method(tensor, qc)
161
        py_out = F.mu_law_decoding(tensor, qc)
162
163
164
165

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
166
    def test_scriptmodule_MuLawDecoding(self):
167
        tensor = torch.rand((1, 10), device="cuda")
168

169
        self._test_script_module(tensor, transforms.MuLawDecoding)
170
171
172
173


if __name__ == '__main__':
    unittest.main()