common_utils.py 2.46 KB
Newer Older
1
import os
2
import tempfile
3
4
from contextlib import contextmanager
from shutil import copytree
5

jamarshon's avatar
jamarshon committed
6
import torch
7
import torchaudio
8
9

TEST_DIR_PATH = os.path.dirname(os.path.realpath(__file__))
10
BACKENDS = torchaudio._backend._audio_backends
11
12
13
14
15
16
17
18
19
20
21
22


def create_temp_assets_dir():
    """
    Creates a temporary directory and moves all files from test/assets there.
    Returns a Tuple[string, TemporaryDirectory] which is the folder path
    and object.
    """
    tmp_dir = tempfile.TemporaryDirectory()
    copytree(os.path.join(TEST_DIR_PATH, "assets"),
             os.path.join(tmp_dir.name, "assets"))
    return tmp_dir.name, tmp_dir
jamarshon's avatar
jamarshon committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


def random_float_tensor(seed, size, a=22695477, c=1, m=2 ** 32):
    """ Generates random tensors given a seed and size
    https://en.wikipedia.org/wiki/Linear_congruential_generator
    X_{n + 1} = (a * X_n + c) % m
    Using Borland C/C++ values

    The tensor will have values between [0,1)
    Inputs:
        seed (int): an int
        size (Tuple[int]): the size of the output tensor
        a (int): the multiplier constant to the generator
        c (int): the additive constant to the generator
        m (int): the modulus constant to the generator
    """
    num_elements = 1
    for s in size:
        num_elements *= s

    arr = [(a * seed + c) % m]
    for i in range(num_elements - 1):
        arr.append((a * arr[i] + c) % m)

    return torch.tensor(arr).float().view(size) / m


def random_int_tensor(seed, size, low=0, high=2 ** 32, a=22695477, c=1, m=2 ** 32):
    """ Same as random_float_tensor but integers between [low, high)
    """
    return torch.floor(random_float_tensor(seed, size, a, c, m) * (high - low)) + low
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85


@contextmanager
def AudioBackendScope(new_backend):
    previous_backend = torchaudio.get_audio_backend()
    try:
        torchaudio.set_audio_backend(new_backend)
        yield
    finally:
        torchaudio.set_audio_backend(previous_backend)


def filter_backends_with_mp3(backends):
    # Filter out backends that do not support mp3

    test_dirpath, _ = create_temp_assets_dir()
    test_filepath = os.path.join(
        test_dirpath, "assets", "steam-train-whistle-daniel_simon.mp3"
    )

    def supports_mp3(backend):
        try:
            with AudioBackendScope(backend):
                torchaudio.load(test_filepath)
            return True
        except RuntimeError:
            return False

    return [backend for backend in backends if supports_mp3(backend)]


BACKENDS_MP3 = filter_backends_with_mp3(BACKENDS)