quesst14_test.py 5.19 KB
Newer Older
Caroline Chen's avatar
Caroline Chen committed
1
2
3
4
5
6
7
8
9
import os
from collections import defaultdict
from pathlib import Path

from parameterized import parameterized
from torchaudio.datasets import quesst14
from torchaudio_unittest.common_utils import (
    get_whitenoise,
    save_wav,
10
11
    TempDirMixin,
    TorchaudioTestCase,
Caroline Chen's avatar
Caroline Chen committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
)


def _get_filename(folder, index):
    if folder == "Audio":
        return f"quesst14_{index:05d}.wav"
    elif folder == "dev_queries":
        return f"quesst14_dev_{index:04d}.wav"
    elif folder == "eval_queries":
        return f"quesst14_eval_{index:04d}.wav"
    return


def _get_key(folder):
    folder_key_mapping = {
        "Audio": "utterances",
        "dev_queries": "dev",
        "eval_queries": "eval",
    }
    return folder_key_mapping[folder]


def _save_sample(dataset_dir, folder, language, index, sample_rate, seed):
    # create and save audio samples to corresponding files
    path = os.path.join(dataset_dir, folder)
    os.makedirs(path, exist_ok=True)
    filename = _get_filename(folder, index)
    file_path = os.path.join(path, filename)

    data = get_whitenoise(
        sample_rate=sample_rate,
        duration=0.01,
        n_channels=1,
        seed=seed,
    )
    save_wav(file_path, data, sample_rate)

    sample = (data, Path(file_path).with_suffix("").name)

    # add audio files and language data to language key files
    scoring_path = os.path.join(dataset_dir, "scoring")
    os.makedirs(scoring_path, exist_ok=True)
    wav_file = f"quesst14Database/{folder}/{filename}"
    line = f"{wav_file} {language}"

    key = _get_key(folder)
    language_key_file = f"language_key_{key}.lst"
    language_key_file = os.path.join(scoring_path, language_key_file)
    with open(language_key_file, "a") as f:
        f.write(line + "\n")

    return sample


def _get_mocked_samples(dataset_dir, folder, sample_rate, seed):
    samples_per_language = 2

    samples_map = defaultdict(list)
    samples_all = []

    curr_idx = 0
    for language in quesst14._LANGUAGES:
        for _ in range(samples_per_language):
            sample = _save_sample(dataset_dir, folder, language, curr_idx, sample_rate, seed)
            samples_map[language].append(sample)
            samples_all.append(sample)

            curr_idx += 1
    return samples_map, samples_all


def get_mock_dataset(dataset_dir):
    """
    dataset_dir: directory to the mocked dataset
    """
    os.makedirs(dataset_dir, exist_ok=True)
    sample_rate = 8000

    audio_seed = 0
    dev_seed = 1
    eval_seed = 2

    mocked_utterances, mocked_utterances_all = _get_mocked_samples(dataset_dir, "Audio", sample_rate, audio_seed)
    mocked_dev_samples, mocked_dev_samples_all = _get_mocked_samples(dataset_dir, "dev_queries", sample_rate, dev_seed)
    mocked_eval_samples, mocked_eval_samples_all = _get_mocked_samples(
        dataset_dir, "eval_queries", sample_rate, eval_seed
    )

    return (
        mocked_utterances,
        mocked_dev_samples,
        mocked_eval_samples,
        mocked_utterances_all,
        mocked_dev_samples_all,
        mocked_eval_samples_all,
    )


class TestQuesst14(TempDirMixin, TorchaudioTestCase):
    root_dir = None
    backend = "default"

    utterances = {}
    dev_samples = {}
    eval_samples = {}
    utterances_all = []
    dev_samples_all = []
    eval_samples_all = []

    @classmethod
    def setUpClass(cls):
        cls.root_dir = cls.get_base_temp_dir()
        dataset_dir = os.path.join(cls.root_dir, "quesst14Database")
        (
            cls.utterances,
            cls.dev_samples,
            cls.eval_samples,
            cls.utterances_all,
            cls.dev_samples_all,
            cls.eval_samples_all,
        ) = get_mock_dataset(dataset_dir)

    def _testQuesst14(self, dataset, data_samples):
        num_samples = 0
        for i, (data, name) in enumerate(dataset):
            self.assertEqual(data, data_samples[i][0])
            assert name == data_samples[i][1]
            num_samples += 1

        assert num_samples == len(data_samples)

    def testQuesst14SubsetDocs(self):
        dataset = quesst14.QUESST14(self.root_dir, language=None, subset="docs")
        self._testQuesst14(dataset, self.utterances_all)

    def testQuesst14SubsetDev(self):
        dataset = quesst14.QUESST14(self.root_dir, language=None, subset="dev")
        self._testQuesst14(dataset, self.dev_samples_all)

    def testQuesst14SubsetEval(self):
        dataset = quesst14.QUESST14(self.root_dir, language=None, subset="eval")
        self._testQuesst14(dataset, self.eval_samples_all)

    @parameterized.expand(quesst14._LANGUAGES)
    def testQuesst14DocsSingleLanguage(self, language):
        dataset = quesst14.QUESST14(self.root_dir, language=language, subset="docs")
        self._testQuesst14(dataset, self.utterances[language])

    @parameterized.expand(quesst14._LANGUAGES)
    def testQuesst14DevSingleLanguage(self, language):
        dataset = quesst14.QUESST14(self.root_dir, language=language, subset="dev")
        self._testQuesst14(dataset, self.dev_samples[language])

    @parameterized.expand(quesst14._LANGUAGES)
    def testQuesst14EvalSingleLanguage(self, language):
        dataset = quesst14.QUESST14(self.root_dir, language=language, subset="eval")
        self._testQuesst14(dataset, self.eval_samples[language])