train.py 20.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
"""
Modified from
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/train.py
"""

import argparse
import logging
import os
35
36
37
import random
from datetime import datetime
from functools import partial
38
39
from time import time

40
import matplotlib.pyplot as plt
41
42
import torch
import torch.distributed as dist
43
44
import torch.multiprocessing as mp
import torchaudio
45
from torch.optim import Adam
46
47
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
48
from torchaudio.models import Tacotron2
49
from tqdm import tqdm
50
51

plt.switch_backend("agg")
52

53
from datasets import SpectralNormalization, split_process_dataset, text_mel_collate_fn
54
from loss import Tacotron2Loss
55
56
from text.text_preprocessing import (
    available_phonemizers,
57
    available_symbol_set,
58
59
60
    get_symbol_list,
    text_to_sequence,
)
61
from utils import save_checkpoint
62
63


64
logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
65
66
67
68
69
70
logger = logging.getLogger(os.path.basename(__file__))


def parse_args(parser):
    """Parse commandline arguments."""

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    parser.add_argument(
        "--dataset", default="ljspeech", choices=["ljspeech"], type=str, help="select dataset to train with"
    )
    parser.add_argument("--logging-dir", type=str, default=None, help="directory to save the log files")
    parser.add_argument("--dataset-path", type=str, default="./", help="path to dataset")
    parser.add_argument("--val-ratio", default=0.1, type=float, help="the ratio of waveforms for validation")

    parser.add_argument("--anneal-steps", nargs="*", help="epochs after which decrease learning rate")
    parser.add_argument(
        "--anneal-factor", type=float, choices=[0.1, 0.3], default=0.1, help="factor for annealing learning rate"
    )

    parser.add_argument("--master-addr", default=None, type=str, help="the address to use for distributed training")
    parser.add_argument("--master-port", default=None, type=str, help="the port to use for distributed training")

    preprocessor = parser.add_argument_group("text preprocessor setup")
    preprocessor.add_argument(
        "--text-preprocessor",
        default="english_characters",
        type=str,
        choices=available_symbol_set,
        help="select text preprocessor to use.",
    )
    preprocessor.add_argument(
        "--phonemizer",
        type=str,
        choices=available_phonemizers,
        help='select phonemizer to use, only used when text-preprocessor is "english_phonemes"',
    )
    preprocessor.add_argument(
        "--phonemizer-checkpoint",
        type=str,
        help="the path or name of the checkpoint for the phonemizer, "
        'only used when text-preprocessor is "english_phonemes"',
    )
    preprocessor.add_argument(
        "--cmudict-root", default="./", type=str, help="the root directory for storing cmudictionary files"
    )
109
110

    # training
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    training = parser.add_argument_group("training setup")
    training.add_argument("--epochs", type=int, required=True, help="number of total epochs to run")
    training.add_argument(
        "--checkpoint-path",
        type=str,
        default="",
        help="checkpoint path. If a file exists, " "the program will load it and resume training.",
    )
    training.add_argument("--workers", default=8, type=int, help="number of data loading workers")
    training.add_argument(
        "--validate-and-checkpoint-freq",
        default=10,
        type=int,
        metavar="N",
        help="validation and saving checkpoint frequency in epochs",
    )
    training.add_argument("--logging-freq", default=10, type=int, metavar="N", help="logging frequency in epochs")

    optimization = parser.add_argument_group("optimization setup")
    optimization.add_argument("--learning-rate", default=1e-3, type=float, help="initial learing rate")
    optimization.add_argument("--weight-decay", default=1e-6, type=float, help="weight decay")
    optimization.add_argument("--batch-size", default=32, type=int, help="batch size per GPU")
    optimization.add_argument(
        "--grad-clip", default=5.0, type=float, help="clipping gradient with maximum gradient norm value"
    )
136
137

    # model parameters
138
139
140
    model = parser.add_argument_group("model parameters")
    model.add_argument("--mask-padding", action="store_true", default=False, help="use mask padding")
    model.add_argument("--symbols-embedding-dim", default=512, type=int, help="input embedding dimension")
141
142

    # encoder
143
144
145
    model.add_argument("--encoder-embedding-dim", default=512, type=int, help="encoder embedding dimension")
    model.add_argument("--encoder-n-convolution", default=3, type=int, help="number of encoder convolutions")
    model.add_argument("--encoder-kernel-size", default=5, type=int, help="encoder kernel size")
146
    # decoder
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    model.add_argument(
        "--n-frames-per-step",
        default=1,
        type=int,
        help="number of frames processed per step (currently only 1 is supported)",
    )
    model.add_argument("--decoder-rnn-dim", default=1024, type=int, help="number of units in decoder LSTM")
    model.add_argument("--decoder-dropout", default=0.1, type=float, help="dropout probability for decoder LSTM")
    model.add_argument("--decoder-max-step", default=2000, type=int, help="maximum number of output mel spectrograms")
    model.add_argument(
        "--decoder-no-early-stopping",
        action="store_true",
        default=False,
        help="stop decoding only when all samples are finished",
    )
162
163

    # attention model
164
165
166
167
168
169
170
171
172
173
174
175
176
    model.add_argument(
        "--attention-hidden-dim", default=128, type=int, help="dimension of attention hidden representation"
    )
    model.add_argument("--attention-rnn-dim", default=1024, type=int, help="number of units in attention LSTM")
    model.add_argument(
        "--attention-location-n-filter", default=32, type=int, help="number of filters for location-sensitive attention"
    )
    model.add_argument(
        "--attention-location-kernel-size", default=31, type=int, help="kernel size for location-sensitive attention"
    )
    model.add_argument("--attention-dropout", default=0.1, type=float, help="dropout probability for attention LSTM")

    model.add_argument("--prenet-dim", default=256, type=int, help="number of ReLU units in prenet layers")
177
178

    # mel-post processing network parameters
179
180
181
    model.add_argument("--postnet-n-convolution", default=5, type=float, help="number of postnet convolutions")
    model.add_argument("--postnet-kernel-size", default=5, type=float, help="postnet kernel size")
    model.add_argument("--postnet-embedding-dim", default=512, type=float, help="postnet embedding dimension")
182

183
    model.add_argument("--gate-threshold", default=0.5, type=float, help="probability threshold for stop token")
184
185

    # audio parameters
186
187
188
189
190
191
192
193
    audio = parser.add_argument_group("audio parameters")
    audio.add_argument("--sample-rate", default=22050, type=int, help="Sampling rate")
    audio.add_argument("--n-fft", default=1024, type=int, help="Filter length for STFT")
    audio.add_argument("--hop-length", default=256, type=int, help="Hop (stride) length")
    audio.add_argument("--win-length", default=1024, type=int, help="Window length")
    audio.add_argument("--n-mels", default=80, type=int, help="")
    audio.add_argument("--mel-fmin", default=0.0, type=float, help="Minimum mel frequency")
    audio.add_argument("--mel-fmax", default=8000.0, type=float, help="Maximum mel frequency")
194
195
196
197

    return parser


198
def adjust_learning_rate(epoch, optimizer, learning_rate, anneal_steps, anneal_factor):
199
200
201
202
203
204
205
206
207
208
    """Adjust learning rate base on the initial setting."""
    p = 0
    if anneal_steps is not None:
        for _, a_step in enumerate(anneal_steps):
            if epoch >= int(a_step):
                p = p + 1

    if anneal_factor == 0.3:
        lr = learning_rate * ((0.1 ** (p // 2)) * (1.0 if p % 2 == 0 else 0.3))
    else:
209
        lr = learning_rate * (anneal_factor**p)
210
211

    for param_group in optimizer.param_groups:
212
        param_group["lr"] = lr
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279


def to_gpu(x):
    x = x.contiguous()
    if torch.cuda.is_available():
        x = x.cuda(non_blocking=True)
    return x


def batch_to_gpu(batch):
    text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths, gate_padded = batch
    text_padded = to_gpu(text_padded).long()
    text_lengths = to_gpu(text_lengths).long()
    mel_specgram_padded = to_gpu(mel_specgram_padded).float()
    gate_padded = to_gpu(gate_padded).float()
    mel_specgram_lengths = to_gpu(mel_specgram_lengths).long()
    x = (text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
    y = (mel_specgram_padded, gate_padded)
    return x, y


def training_step(model, train_batch, batch_idx):
    (text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths), y = batch_to_gpu(train_batch)
    y_pred = model(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
    y[0].requires_grad = False
    y[1].requires_grad = False
    losses = Tacotron2Loss()(y_pred[:3], y)
    return losses[0] + losses[1] + losses[2], losses


def validation_step(model, val_batch, batch_idx):
    (text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths), y = batch_to_gpu(val_batch)
    y_pred = model(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
    losses = Tacotron2Loss()(y_pred[:3], y)
    return losses[0] + losses[1] + losses[2], losses


def reduce_tensor(tensor, world_size):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.ReduceOp.SUM)
    if rt.is_floating_point():
        rt = rt / world_size
    else:
        rt = rt // world_size
    return rt


def log_additional_info(writer, model, loader, epoch):
    model.eval()
    data = next(iter(loader))
    with torch.no_grad():
        (text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths), _ = batch_to_gpu(data)
        y_pred = model(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
        mel_out, mel_out_postnet, gate_out, alignment = y_pred

    fig = plt.figure()
    ax = plt.gca()
    ax.imshow(mel_out[0].cpu().numpy())
    writer.add_figure("trn/mel_out", fig, epoch)
    fig = plt.figure()
    ax = plt.gca()
    ax.imshow(mel_out_postnet[0].cpu().numpy())
    writer.add_figure("trn/mel_out_postnet", fig, epoch)
    writer.add_image("trn/gate_out", torch.tile(gate_out[:1], (10, 1)), epoch, dataformats="HW")
    writer.add_image("trn/alignment", alignment[0], epoch, dataformats="HW")


280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def get_datasets(args):
    text_preprocessor = partial(
        text_to_sequence,
        symbol_list=args.text_preprocessor,
        phonemizer=args.phonemizer,
        checkpoint=args.phonemizer_checkpoint,
        cmudict_root=args.cmudict_root,
    )

    transforms = torch.nn.Sequential(
        torchaudio.transforms.MelSpectrogram(
            sample_rate=args.sample_rate,
            n_fft=args.n_fft,
            win_length=args.win_length,
            hop_length=args.hop_length,
            f_min=args.mel_fmin,
            f_max=args.mel_fmax,
            n_mels=args.n_mels,
298
            mel_scale="slaney",
299
300
            normalized=False,
            power=1,
301
            norm="slaney",
302
        ),
303
        SpectralNormalization(),
304
305
    )
    trainset, valset = split_process_dataset(
306
307
        args.dataset, args.dataset_path, args.val_ratio, transforms, text_preprocessor
    )
308
309
310
    return trainset, valset


311
312
313
314
315
316
def train(rank, world_size, args):
    dist.init_process_group("nccl", rank=rank, world_size=world_size)

    if rank == 0 and args.logging_dir:
        if not os.path.isdir(args.logging_dir):
            os.makedirs(args.logging_dir)
317
        filehandler = logging.FileHandler(os.path.join(args.logging_dir, "train.log"))
318
319
320
321
322
323
324
325
326
327
328
        filehandler.setLevel(logging.INFO)
        logger.addHandler(filehandler)

        writer = SummaryWriter(log_dir=args.logging_dir)
    else:
        writer = None

    torch.manual_seed(0)

    torch.cuda.set_device(rank)

329
    symbols = get_symbol_list(args.text_preprocessor)
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

    model = Tacotron2(
        mask_padding=args.mask_padding,
        n_mels=args.n_mels,
        n_symbol=len(symbols),
        n_frames_per_step=args.n_frames_per_step,
        symbol_embedding_dim=args.symbols_embedding_dim,
        encoder_embedding_dim=args.encoder_embedding_dim,
        encoder_n_convolution=args.encoder_n_convolution,
        encoder_kernel_size=args.encoder_kernel_size,
        decoder_rnn_dim=args.decoder_rnn_dim,
        decoder_max_step=args.decoder_max_step,
        decoder_dropout=args.decoder_dropout,
        decoder_early_stopping=(not args.decoder_no_early_stopping),
        attention_rnn_dim=args.attention_rnn_dim,
        attention_hidden_dim=args.attention_hidden_dim,
        attention_location_n_filter=args.attention_location_n_filter,
        attention_location_kernel_size=args.attention_location_kernel_size,
        attention_dropout=args.attention_dropout,
        prenet_dim=args.prenet_dim,
        postnet_n_convolution=args.postnet_n_convolution,
        postnet_kernel_size=args.postnet_kernel_size,
        postnet_embedding_dim=args.postnet_embedding_dim,
        gate_threshold=args.gate_threshold,
    ).cuda(rank)
    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank])

    optimizer = Adam(model.parameters(), lr=args.learning_rate)

    best_loss = float("inf")
    start_epoch = 0

    if args.checkpoint_path and os.path.isfile(args.checkpoint_path):
        logger.info(f"Checkpoint: loading '{args.checkpoint_path}'")
365
        map_location = {"cuda:%d" % 0: "cuda:%d" % rank}
366
367
368
369
370
371
372
373
        checkpoint = torch.load(args.checkpoint_path, map_location=map_location)

        start_epoch = checkpoint["epoch"]
        best_loss = checkpoint["best_loss"]

        model.load_state_dict(checkpoint["state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer"])

374
        logger.info(f"Checkpoint: loaded '{args.checkpoint_path}' at epoch {checkpoint['epoch']}")
375

376
    trainset, valset = get_datasets(args)
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

    train_sampler = torch.utils.data.distributed.DistributedSampler(
        trainset,
        shuffle=True,
        num_replicas=world_size,
        rank=rank,
    )
    val_sampler = torch.utils.data.distributed.DistributedSampler(
        valset,
        shuffle=False,
        num_replicas=world_size,
        rank=rank,
    )

    loader_params = {
        "batch_size": args.batch_size,
        "num_workers": args.workers,
394
        "prefetch_factor": 1024,
395
        "persistent_workers": True,
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        "shuffle": False,
        "pin_memory": True,
        "drop_last": False,
        "collate_fn": partial(text_mel_collate_fn, n_frames_per_step=args.n_frames_per_step),
    }

    train_loader = DataLoader(trainset, sampler=train_sampler, **loader_params)
    val_loader = DataLoader(valset, sampler=val_sampler, **loader_params)
    dist.barrier()

    for epoch in range(start_epoch, args.epochs):
        start = time()

        model.train()
        trn_loss, counts = 0, 0

        if rank == 0:
            iterator = tqdm(enumerate(train_loader), desc=f"Epoch {epoch}", total=len(train_loader))
        else:
            iterator = enumerate(train_loader)

        for i, batch in iterator:
418
            adjust_learning_rate(epoch, optimizer, args.learning_rate, args.anneal_steps, args.anneal_factor)
419
420
421
422
423
424

            model.zero_grad()

            loss, losses = training_step(model, batch, i)

            loss.backward()
425
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

            optimizer.step()

            if rank == 0 and writer:
                global_iters = epoch * len(train_loader)
                writer.add_scalar("trn/mel_loss", losses[0], global_iters)
                writer.add_scalar("trn/mel_postnet_loss", losses[1], global_iters)
                writer.add_scalar("trn/gate_loss", losses[2], global_iters)

            trn_loss += loss * len(batch[0])
            counts += len(batch[0])

        trn_loss = trn_loss / counts

        trn_loss = reduce_tensor(trn_loss, world_size)
        if rank == 0:
            logger.info(f"[Epoch: {epoch}] time: {time()-start}; trn_loss: {trn_loss}")
            if writer:
                writer.add_scalar("trn_loss", trn_loss, epoch)

        if ((epoch + 1) % args.validate_and_checkpoint_freq == 0) or (epoch == args.epochs - 1):

            val_start_time = time()
            model.eval()

            val_loss, counts = 0, 0
            iterator = tqdm(enumerate(val_loader), desc=f"[Rank: {rank}; Epoch: {epoch}; Eval]", total=len(val_loader))

            with torch.no_grad():
                for val_batch_idx, val_batch in iterator:
                    val_loss = val_loss + validation_step(model, val_batch, val_batch_idx)[0] * len(val_batch[0])
                    counts = counts + len(val_batch[0])
                val_loss = val_loss / counts

            val_loss = reduce_tensor(val_loss, world_size)
            if rank == 0 and writer:
                writer.add_scalar("val_loss", val_loss, epoch)
                log_additional_info(writer, model, val_loader, epoch)

            if rank == 0:
                is_best = val_loss < best_loss
                best_loss = min(val_loss, best_loss)
                logger.info(f"[Rank: {rank}, Epoch: {epoch}; Eval] time: {time()-val_start_time}; val_loss: {val_loss}")
                logger.info(f"[Epoch: {epoch}] Saving checkpoint to {args.checkpoint_path}")
                save_checkpoint(
                    {
                        "epoch": epoch + 1,
                        "state_dict": model.state_dict(),
                        "best_loss": best_loss,
                        "optimizer": optimizer.state_dict(),
                    },
                    is_best,
                    args.checkpoint_path,
                )

    dist.destroy_process_group()


def main(args):
    logger.info("Start time: {}".format(str(datetime.now())))

    torch.manual_seed(0)
    random.seed(0)

    if args.master_addr is not None:
491
492
493
        os.environ["MASTER_ADDR"] = args.master_addr
    elif "MASTER_ADDR" not in os.environ:
        os.environ["MASTER_ADDR"] = "localhost"
494
495

    if args.master_port is not None:
496
497
498
        os.environ["MASTER_PORT"] = args.master_port
    elif "MASTER_PORT" not in os.environ:
        os.environ["MASTER_PORT"] = "17778"
499
500
501
502
503
504

    device_counts = torch.cuda.device_count()

    logger.info(f"# available GPUs: {device_counts}")

    # download dataset is not already downloaded
505
506
    if args.dataset == "ljspeech":
        if not os.path.exists(os.path.join(args.dataset_path, "LJSpeech-1.1")):
507
            from torchaudio.datasets import LJSPEECH
508

509
510
511
512
513
            LJSPEECH(root=args.dataset_path, download=True)

    if device_counts == 1:
        train(0, 1, args)
    else:
514
515
516
517
518
519
520
521
522
        mp.spawn(
            train,
            args=(
                device_counts,
                args,
            ),
            nprocs=device_counts,
            join=True,
        )
523
524
525
526

    logger.info(f"End time: {datetime.now()}")


527
528
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="PyTorch Tacotron 2 Training")
529
530
531
532
    parser = parse_args(parser)
    args, _ = parser.parse_known_args()

    main(args)