lightning.py 7.57 KB
Newer Older
1
2
3
4
5
6
7
8
from functools import partial
from typing import List

import sentencepiece as spm
import torch
import torchaudio
from common import (
    Batch,
9
    batch_by_token_count,
10
11
12
13
14
    FunctionalModule,
    GlobalStatsNormalization,
    piecewise_linear_log,
    post_process_hypos,
    spectrogram_transform,
15
    WarmupLR,
16
17
)
from pytorch_lightning import LightningModule
18
from torchaudio.models import emformer_rnnt_base, RNNTBeamSearch
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

from .dataset import MUSTC


class CustomDataset(torch.utils.data.Dataset):
    r"""Sort samples by target length and batch to max token count."""

    def __init__(self, base_dataset, max_token_limit, max_len):
        super().__init__()
        self.base_dataset = base_dataset
        idx_target_lengths = self.base_dataset.idx_target_lengths
        idx_target_lengths = [ele for ele in idx_target_lengths if ele[1] <= max_len]
        idx_target_lengths = sorted(idx_target_lengths, key=lambda x: x[1])

        self.batches = batch_by_token_count(idx_target_lengths, max_token_limit)

    def __getitem__(self, idx):
        return [self.base_dataset[subidx] for subidx in self.batches[idx]]

    def __len__(self):
        return len(self.batches)


class MuSTCRNNTModule(LightningModule):
    def __init__(
        self,
        *,
        mustc_path: str,
        sp_model_path: str,
        global_stats_path: str,
    ):
        super().__init__()

        self.model = emformer_rnnt_base(num_symbols=501)
        self.loss = torchaudio.transforms.RNNTLoss(reduction="mean", clamp=1.0)
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=5e-4, betas=(0.9, 0.999), eps=1e-8)
        self.warmup_lr_scheduler = WarmupLR(self.optimizer, 10000)

        self.train_data_pipeline = torch.nn.Sequential(
            FunctionalModule(piecewise_linear_log),
            GlobalStatsNormalization(global_stats_path),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
            torchaudio.transforms.FrequencyMasking(27),
            torchaudio.transforms.FrequencyMasking(27),
            torchaudio.transforms.TimeMasking(100, p=0.2),
            torchaudio.transforms.TimeMasking(100, p=0.2),
            FunctionalModule(partial(torch.nn.functional.pad, pad=(0, 4))),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
        )
        self.valid_data_pipeline = torch.nn.Sequential(
            FunctionalModule(piecewise_linear_log),
            GlobalStatsNormalization(global_stats_path),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
            FunctionalModule(partial(torch.nn.functional.pad, pad=(0, 4))),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
        )

        self.mustc_path = mustc_path

        self.sp_model = spm.SentencePieceProcessor(model_file=sp_model_path)
        self.blank_idx = self.sp_model.get_piece_size()

    def _extract_labels(self, samples: List):
        """Convert text transcript into int labels."""
        targets = [self.sp_model.encode(sample[1]) for sample in samples]
        lengths = torch.tensor([len(elem) for elem in targets]).to(dtype=torch.int32)
        targets = torch.nn.utils.rnn.pad_sequence(
            [torch.tensor(elem) for elem in targets],
            batch_first=True,
            padding_value=1.0,
        ).to(dtype=torch.int32)
        return targets, lengths

    def _train_extract_features(self, samples: List):
        mel_features = [spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.train_data_pipeline(features)
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
        return features, lengths

    def _valid_extract_features(self, samples: List):
        mel_features = [spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.valid_data_pipeline(features)
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
        return features, lengths

    def _train_collate_fn(self, samples: List):
        features, feature_lengths = self._train_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _valid_collate_fn(self, samples: List):
        features, feature_lengths = self._valid_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _test_collate_fn(self, samples: List):
        return self._valid_collate_fn(samples), [sample[1] for sample in samples]

    def _step(self, batch, batch_idx, step_type):
        if batch is None:
            return None

        prepended_targets = batch.targets.new_empty([batch.targets.size(0), batch.targets.size(1) + 1])
        prepended_targets[:, 1:] = batch.targets
        prepended_targets[:, 0] = self.blank_idx
        prepended_target_lengths = batch.target_lengths + 1
        output, src_lengths, _, _ = self.model(
            batch.features,
            batch.feature_lengths,
            prepended_targets,
            prepended_target_lengths,
        )
        loss = self.loss(output, batch.targets, src_lengths, batch.target_lengths)
        self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)
        return loss

    def configure_optimizers(self):
        return (
            [self.optimizer],
            [
                {"scheduler": self.warmup_lr_scheduler, "interval": "step"},
            ],
        )

    def forward(self, batch: Batch):
        decoder = RNNTBeamSearch(self.model, self.blank_idx)
        hypotheses = decoder(batch.features.to(self.device), batch.feature_lengths.to(self.device), 20)
        return post_process_hypos(hypotheses, self.sp_model)[0][0]

    def training_step(self, batch: Batch, batch_idx):
        return self._step(batch, batch_idx, "train")

    def validation_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "val")

    def test_step(self, batch_tuple, batch_idx):
        return self._step(batch_tuple[0], batch_idx, "test")

    def train_dataloader(self):
        dataset = CustomDataset(MUSTC(self.mustc_path, subset="train"), 100, 20)
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=None,
            collate_fn=self._train_collate_fn,
            num_workers=10,
            shuffle=True,
        )
        return dataloader

    def val_dataloader(self):
        dataset = CustomDataset(MUSTC(self.mustc_path, subset="dev"), 100, 20)
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=None,
            collate_fn=self._valid_collate_fn,
            num_workers=10,
        )
        return dataloader

    def test_common_dataloader(self):
        dataset = MUSTC(self.mustc_path, subset="tst-COMMON")
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
        return dataloader

    def test_he_dataloader(self):
        dataset = MUSTC(self.mustc_path, subset="tst-HE")
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
        return dataloader

    def dev_dataloader(self):
        dataset = MUSTC(self.mustc_path, subset="dev")
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
        return dataloader