lightning.py 15.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import json
import logging
import math
import os
import random
from collections import namedtuple
from typing import List, Tuple

import sentencepiece as spm
import torch
import torchaudio
from pytorch_lightning import LightningModule, seed_everything
from torchaudio.models import Hypothesis, RNNTBeamSearch
from torchaudio.prototype.models import conformer_rnnt_base

logger = logging.getLogger()

seed_everything(1)

Batch = namedtuple("Batch", ["features", "feature_lengths", "targets", "target_lengths"])


_decibel = 2 * 20 * math.log10(torch.iinfo(torch.int16).max)
_gain = pow(10, 0.05 * _decibel)

_spectrogram_transform = torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=400, n_mels=80, hop_length=160)

_expected_spm_vocab_size = 1023


def _piecewise_linear_log(x):
    x[x > math.e] = torch.log(x[x > math.e])
    x[x <= math.e] = x[x <= math.e] / math.e
    return x


def _batch_by_token_count(idx_target_lengths, token_limit, sample_limit=None):
    batches = []
    current_batch = []
    current_token_count = 0
    for idx, target_length in idx_target_lengths:
        if current_token_count + target_length > token_limit or (sample_limit and len(current_batch) == sample_limit):
            batches.append(current_batch)
            current_batch = [idx]
            current_token_count = target_length
        else:
            current_batch.append(idx)
            current_token_count += target_length

    if current_batch:
        batches.append(current_batch)

    return batches


def get_sample_lengths(librispeech_dataset):
    fileid_to_target_length = {}

    def _target_length(fileid):
        if fileid not in fileid_to_target_length:
            speaker_id, chapter_id, _ = fileid.split("-")

            file_text = speaker_id + "-" + chapter_id + librispeech_dataset._ext_txt
            file_text = os.path.join(librispeech_dataset._path, speaker_id, chapter_id, file_text)

            with open(file_text) as ft:
                for line in ft:
                    fileid_text, transcript = line.strip().split(" ", 1)
                    fileid_to_target_length[fileid_text] = len(transcript)

        return fileid_to_target_length[fileid]

    return [_target_length(fileid) for fileid in librispeech_dataset._walker]


class CustomBucketDataset(torch.utils.data.Dataset):
    def __init__(self, dataset, lengths, max_token_limit, num_buckets, shuffle=False, sample_limit=None):
        super().__init__()

        assert len(dataset) == len(lengths)

        self.dataset = dataset

        max_length = max(lengths)
        min_length = min(lengths)

        assert max_token_limit >= max_length

        buckets = torch.linspace(min_length, max_length, num_buckets)
        lengths = torch.tensor(lengths)
        bucket_assignments = torch.bucketize(lengths, buckets)

        idx_length_buckets = [(idx, length, bucket_assignments[idx]) for idx, length in enumerate(lengths)]
        if shuffle:
            idx_length_buckets = random.sample(idx_length_buckets, len(idx_length_buckets))
        else:
            idx_length_buckets = sorted(idx_length_buckets, key=lambda x: x[1], reverse=True)

        sorted_idx_length_buckets = sorted(idx_length_buckets, key=lambda x: x[2])
        self.batches = _batch_by_token_count(
            [(idx, length) for idx, length, _ in sorted_idx_length_buckets], max_token_limit, sample_limit=sample_limit
        )

    def __getitem__(self, idx):
        return [self.dataset[subidx] for subidx in self.batches[idx]]

    def __len__(self):
        return len(self.batches)


class FunctionalModule(torch.nn.Module):
    def __init__(self, functional):
        super().__init__()
        self.functional = functional

    def forward(self, input):
        return self.functional(input)


class GlobalStatsNormalization(torch.nn.Module):
    def __init__(self, global_stats_path):
        super().__init__()

        with open(global_stats_path) as f:
            blob = json.loads(f.read())

        self.mean = torch.tensor(blob["mean"])
        self.invstddev = torch.tensor(blob["invstddev"])

    def forward(self, input):
        return (input - self.mean) * self.invstddev


class WarmupLR(torch.optim.lr_scheduler._LRScheduler):
    r"""Learning rate scheduler that performs linear warmup and exponential annealing.

    Args:
        optimizer (torch.optim.Optimizer): optimizer to use.
        warmup_steps (int): number of scheduler steps for which to warm up learning rate.
        force_anneal_step (int): scheduler step at which annealing of learning rate begins.
        anneal_factor (float): factor to scale base learning rate by at each annealing step.
        last_epoch (int, optional): The index of last epoch. (Default: -1)
        verbose (bool, optional): If ``True``, prints a message to stdout for
            each update. (Default: ``False``)
    """

    def __init__(
        self,
        optimizer: torch.optim.Optimizer,
        warmup_steps: int,
        force_anneal_step: int,
        anneal_factor: float,
        last_epoch=-1,
        verbose=False,
    ):
        self.warmup_steps = warmup_steps
        self.force_anneal_step = force_anneal_step
        self.anneal_factor = anneal_factor
        super().__init__(optimizer, last_epoch=last_epoch, verbose=verbose)

    def get_lr(self):
        if self._step_count < self.force_anneal_step:
            return [(min(1.0, self._step_count / self.warmup_steps)) * base_lr for base_lr in self.base_lrs]
        else:
            scaling_factor = self.anneal_factor ** (self._step_count - self.force_anneal_step)
            return [scaling_factor * base_lr for base_lr in self.base_lrs]


def post_process_hypos(
    hypos: List[Hypothesis], sp_model: spm.SentencePieceProcessor
) -> List[Tuple[str, float, List[int], List[int]]]:
    post_process_remove_list = [
        sp_model.unk_id(),
        sp_model.eos_id(),
        sp_model.pad_id(),
    ]
    filtered_hypo_tokens = [
        [token_index for token_index in h.tokens[1:] if token_index not in post_process_remove_list] for h in hypos
    ]
    hypos_str = [sp_model.decode(s) for s in filtered_hypo_tokens]
    hypos_ali = [h.alignment[1:] for h in hypos]
    hypos_ids = [h.tokens[1:] for h in hypos]
    hypos_score = [[math.exp(h.score)] for h in hypos]

    nbest_batch = list(zip(hypos_str, hypos_score, hypos_ali, hypos_ids))

    return nbest_batch


class ConformerRNNTModule(LightningModule):
    def __init__(
        self,
        *,
        librispeech_path: str,
        sp_model_path: str,
        global_stats_path: str,
    ):
        super().__init__()

        self.sp_model = spm.SentencePieceProcessor(model_file=sp_model_path)
        spm_vocab_size = self.sp_model.get_piece_size()
        assert spm_vocab_size == _expected_spm_vocab_size, (
            "The model returned by conformer_rnnt_base expects a SentencePiece model of "
            f"vocabulary size {_expected_spm_vocab_size}, but the given SentencePiece model has a vocabulary size "
            f"of {spm_vocab_size}. Please provide a correctly configured SentencePiece model."
        )
        self.blank_idx = spm_vocab_size

        # ``conformer_rnnt_base`` hardcodes a specific Conformer RNN-T configuration.
        # For greater customizability, please refer to ``conformer_rnnt_model``.
        self.model = conformer_rnnt_base()
        self.loss = torchaudio.transforms.RNNTLoss(reduction="sum")
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=8e-4, betas=(0.9, 0.98), eps=1e-9)
        self.warmup_lr_scheduler = WarmupLR(self.optimizer, 40, 120, 0.96)

        self.train_data_pipeline = torch.nn.Sequential(
            FunctionalModule(lambda x: _piecewise_linear_log(x * _gain)),
            GlobalStatsNormalization(global_stats_path),
            FunctionalModule(lambda x: x.transpose(1, 2)),
            torchaudio.transforms.FrequencyMasking(27),
            torchaudio.transforms.FrequencyMasking(27),
            torchaudio.transforms.TimeMasking(100, p=0.2),
            torchaudio.transforms.TimeMasking(100, p=0.2),
            FunctionalModule(lambda x: x.transpose(1, 2)),
        )
        self.valid_data_pipeline = torch.nn.Sequential(
            FunctionalModule(lambda x: _piecewise_linear_log(x * _gain)),
            GlobalStatsNormalization(global_stats_path),
        )

        self.librispeech_path = librispeech_path

        self.train_dataset_lengths = None
        self.val_dataset_lengths = None

        self.automatic_optimization = False

    def _extract_labels(self, samples: List):
        targets = [self.sp_model.encode(sample[2].lower()) for sample in samples]
        lengths = torch.tensor([len(elem) for elem in targets]).to(dtype=torch.int32)
        targets = torch.nn.utils.rnn.pad_sequence(
            [torch.tensor(elem) for elem in targets],
            batch_first=True,
            padding_value=1.0,
        ).to(dtype=torch.int32)
        return targets, lengths

    def _train_extract_features(self, samples: List):
        mel_features = [_spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.train_data_pipeline(features)
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
        return features, lengths

    def _valid_extract_features(self, samples: List):
        mel_features = [_spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.valid_data_pipeline(features)
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
        return features, lengths

    def _train_collate_fn(self, samples: List):
        features, feature_lengths = self._train_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _valid_collate_fn(self, samples: List):
        features, feature_lengths = self._valid_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _test_collate_fn(self, samples: List):
        return self._valid_collate_fn(samples), samples

    def _step(self, batch, _, step_type):
        if batch is None:
            return None

        prepended_targets = batch.targets.new_empty([batch.targets.size(0), batch.targets.size(1) + 1])
        prepended_targets[:, 1:] = batch.targets
        prepended_targets[:, 0] = self.blank_idx
        prepended_target_lengths = batch.target_lengths + 1
        output, src_lengths, _, _ = self.model(
            batch.features,
            batch.feature_lengths,
            prepended_targets,
            prepended_target_lengths,
        )
        loss = self.loss(output, batch.targets, src_lengths, batch.target_lengths)
        self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)

        return loss

    def configure_optimizers(self):
        return (
            [self.optimizer],
            [{"scheduler": self.warmup_lr_scheduler, "interval": "epoch"}],
        )

    def forward(self, batch: Batch):
        decoder = RNNTBeamSearch(self.model, self.blank_idx)
        hypotheses = decoder(batch.features.to(self.device), batch.feature_lengths.to(self.device), 20)
        return post_process_hypos(hypotheses, self.sp_model)[0][0]

    def training_step(self, batch: Batch, batch_idx):
        """Custom training step.

        By default, DDP does the following on each train step:
        - For each GPU, compute loss and gradient on shard of training data.
        - Sync and average gradients across all GPUs. The final gradient
          is (sum of gradients across all GPUs) / N, where N is the world
          size (total number of GPUs).
        - Update parameters on each GPU.

        Here, we do the following:
        - For k-th GPU, compute loss and scale it by (N / B_total), where B_total is
          the sum of batch sizes across all GPUs. Compute gradient from scaled loss.
        - Sync and average gradients across all GPUs. The final gradient
          is (sum of gradients across all GPUs) / B_total.
        - Update parameters on each GPU.

        Doing so allows us to account for the variability in batch sizes that
        variable-length sequential data commonly yields.
        """

        opt = self.optimizers()
        opt.zero_grad()
        loss = self._step(batch, batch_idx, "train")
        batch_size = batch.features.size(0)
        batch_sizes = self.all_gather(batch_size)
        self.log("Gathered batch size", batch_sizes.sum(), on_step=True, on_epoch=True)
        loss *= batch_sizes.size(0) / batch_sizes.sum()  # world size / batch size
        self.manual_backward(loss)
        torch.nn.utils.clip_grad_norm_(self.model.parameters(), 10.0)
        opt.step()

        # step every epoch
        sch = self.lr_schedulers()
        if self.trainer.is_last_batch:
            sch.step()

        return loss

    def validation_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "val")

    def test_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "test")

    def train_dataloader(self):
        datasets = [
            torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-clean-360"),
            torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-clean-100"),
            torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-other-500"),
        ]

        if not self.train_dataset_lengths:
            self.train_dataset_lengths = [get_sample_lengths(dataset) for dataset in datasets]

        dataset = torch.utils.data.ConcatDataset(
            [
                CustomBucketDataset(dataset, lengths, 700, 50, shuffle=False, sample_limit=2)
                for dataset, lengths in zip(datasets, self.train_dataset_lengths)
            ]
        )
        dataloader = torch.utils.data.DataLoader(
            dataset,
            collate_fn=self._train_collate_fn,
            num_workers=10,
            batch_size=None,
            shuffle=True,
        )
        return dataloader

    def val_dataloader(self):
        datasets = [
            torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="dev-clean"),
            torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="dev-other"),
        ]

        if not self.val_dataset_lengths:
            self.val_dataset_lengths = [get_sample_lengths(dataset) for dataset in datasets]

        dataset = torch.utils.data.ConcatDataset(
            [
                CustomBucketDataset(dataset, lengths, 700, 1, sample_limit=2)
                for dataset, lengths in zip(datasets, self.val_dataset_lengths)
            ]
        )
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=None,
            collate_fn=self._valid_collate_fn,
            num_workers=10,
        )
        return dataloader

    def test_dataloader(self):
        dataset = torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="test-clean")
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
        return dataloader