lightning.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import json
import math
import os
from collections import namedtuple
from typing import List, Tuple

import sentencepiece as spm
import torch
import torchaudio
from pytorch_lightning import LightningModule
from torchaudio.models import Hypothesis, RNNTBeamSearch, emformer_rnnt_base
from torchaudio.transforms import TimeMasking
from utils import GAIN, piecewise_linear_log, spectrogram_transform

Batch = namedtuple("Batch", ["features", "feature_lengths", "targets", "target_lengths"])


def _batch_by_token_count(idx_target_lengths, token_limit):
    batches = []
    current_batch = []
    current_token_count = 0
    for idx, target_length in idx_target_lengths:
        if target_length == -1:
            continue
        if current_token_count + target_length > token_limit:
            batches.append(current_batch)
            current_batch = [idx]
            current_token_count = target_length
        else:
            current_batch.append(idx)
            current_token_count += target_length

    if current_batch:
        batches.append(current_batch)

    return batches


class CustomDataset(torch.utils.data.Dataset):
    r"""Sort samples by target length and batch to max durations."""

    def __init__(self, base_dataset, max_token_limit):
        super().__init__()
        self.base_dataset = base_dataset

        idx_target_lengths = [
            (idx, self._target_length(fileid, line)) for idx, (fileid, line) in enumerate(self.base_dataset._filelist)
        ]

        assert len(idx_target_lengths) > 0

        idx_target_lengths = sorted(idx_target_lengths, key=lambda x: x[1])

        assert max_token_limit >= idx_target_lengths[-1][1]

        self.batches = _batch_by_token_count(idx_target_lengths, max_token_limit)

    def _target_length(self, fileid, line):
        transcript_path = os.path.join(self.base_dataset._path, "stm", fileid)
        with open(transcript_path + ".stm") as f:
            transcript = f.readlines()[line]
            talk_id, _, speaker_id, start_time, end_time, identifier, transcript = transcript.split(" ", 6)
            if transcript.lower() == "ignore_time_segment_in_scoring\n":
                return -1
            else:
                return float(end_time) - float(start_time)

    def __getitem__(self, idx):
        return [self.base_dataset[subidx] for subidx in self.batches[idx]]

    def __len__(self):
        return len(self.batches)


class FunctionalModule(torch.nn.Module):
    def __init__(self, functional):
        super().__init__()
        self.functional = functional

    def forward(self, input):
        return self.functional(input)


class GlobalStatsNormalization(torch.nn.Module):
    def __init__(self, global_stats_path):
        super().__init__()

        with open(global_stats_path) as f:
            blob = json.loads(f.read())

        self.mean = torch.tensor(blob["mean"])
        self.invstddev = torch.tensor(blob["invstddev"])

    def forward(self, input):
        return (input - self.mean) * self.invstddev


class WarmupLR(torch.optim.lr_scheduler._LRScheduler):
    def __init__(self, optimizer, warmup_updates, last_epoch=-1, verbose=False):
        self.warmup_updates = warmup_updates
        super().__init__(optimizer, last_epoch=last_epoch, verbose=verbose)

    def get_lr(self):
        return [(min(1.0, self._step_count / self.warmup_updates)) * base_lr for base_lr in self.base_lrs]


def post_process_hypos(
    hypos: List[Hypothesis], sp_model: spm.SentencePieceProcessor
) -> List[Tuple[str, float, List[int], List[int]]]:
    post_process_remove_list = [
        sp_model.unk_id(),
        sp_model.eos_id(),
        sp_model.pad_id(),
    ]
    filtered_hypo_tokens = [
        [token_index for token_index in h.tokens[1:] if token_index not in post_process_remove_list] for h in hypos
    ]
    hypos_str = [sp_model.decode(s) for s in filtered_hypo_tokens]
    hypos_ali = [h.alignment[1:] for h in hypos]
    hypos_ids = [h.tokens[1:] for h in hypos]
    hypos_score = [[math.exp(h.score)] for h in hypos]

    nbest_batch = list(zip(hypos_str, hypos_score, hypos_ali, hypos_ids))

    return nbest_batch


class RNNTModule(LightningModule):
    def __init__(
        self,
        *,
        tedlium_path: str,
        sp_model_path: str,
        global_stats_path: str,
        reduction: str,
    ):
        super().__init__()

        self.model = emformer_rnnt_base(num_symbols=501)
        self.loss = torchaudio.transforms.RNNTLoss(reduction=reduction, clamp=1.0)
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=5e-4, betas=(0.9, 0.999), eps=1e-8)
        self.warmup_lr_scheduler = WarmupLR(self.optimizer, 10000)

        self.train_data_pipeline = torch.nn.Sequential(
            FunctionalModule(lambda x: piecewise_linear_log(x * GAIN)),
            GlobalStatsNormalization(global_stats_path),
            FunctionalModule(lambda x: x.transpose(1, 2)),
            torchaudio.transforms.FrequencyMasking(27),
            torchaudio.transforms.FrequencyMasking(27),
150
151
            TimeMasking(100, p=0.2),
            TimeMasking(100, p=0.2),
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
            FunctionalModule(lambda x: torch.nn.functional.pad(x, (0, 4))),
            FunctionalModule(lambda x: x.transpose(1, 2)),
        )
        self.valid_data_pipeline = torch.nn.Sequential(
            FunctionalModule(lambda x: piecewise_linear_log(x * GAIN)),
            GlobalStatsNormalization(global_stats_path),
            FunctionalModule(lambda x: x.transpose(1, 2)),
            FunctionalModule(lambda x: torch.nn.functional.pad(x, (0, 4))),
            FunctionalModule(lambda x: x.transpose(1, 2)),
        )

        self.tedlium_path = tedlium_path

        self.sp_model = spm.SentencePieceProcessor(model_file=sp_model_path)
        self.blank_idx = self.sp_model.get_piece_size()

    def _extract_labels(self, samples: List):
        """Convert text transcript into int labels.

        Note:
            There are ``<unk>`` tokens in the training set that are regarded as normal tokens
            by the SentencePiece model. This will impact RNNT decoding since the decoding result
            of ``<unk>`` will be ``?? unk ??`` and will not be excluded from the final prediction.
            To address it, here we replace ``<unk>`` with ``<garbage>`` and set
            ``user_defined_symbols=["<garbage>"]`` in the SentencePiece model training.
            Then we map the index of ``<garbage>`` to the real ``unknown`` index.
        """
        targets = [
            self.sp_model.encode(sample[2].lower().replace("<unk>", "<garbage>").replace("\n", ""))
            for sample in samples
        ]
        targets = [
            [ele if ele != 4 else self.sp_model.unk_id() for ele in target] for target in targets
        ]  # map id of <unk> token to unk_id
        lengths = torch.tensor([len(elem) for elem in targets]).to(dtype=torch.int32)
        targets = torch.nn.utils.rnn.pad_sequence(
            [torch.tensor(elem) for elem in targets],
            batch_first=True,
            padding_value=1.0,
        ).to(dtype=torch.int32)
        return targets, lengths

    def _train_extract_features(self, samples: List):
        mel_features = [spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.train_data_pipeline(features)
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
        return features, lengths

    def _valid_extract_features(self, samples: List):
        mel_features = [spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.valid_data_pipeline(features)
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
        return features, lengths

    def _train_collate_fn(self, samples: List):
        features, feature_lengths = self._train_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _valid_collate_fn(self, samples: List):
        features, feature_lengths = self._valid_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _test_collate_fn(self, samples: List):
        return self._valid_collate_fn(samples), samples

    def _step(self, batch, batch_idx, step_type):
        if batch is None:
            return None

        prepended_targets = batch.targets.new_empty([batch.targets.size(0), batch.targets.size(1) + 1])
        prepended_targets[:, 1:] = batch.targets
        prepended_targets[:, 0] = self.blank_idx
        prepended_target_lengths = batch.target_lengths + 1
        output, src_lengths, _, _ = self.model(
            batch.features,
            batch.feature_lengths,
            prepended_targets,
            prepended_target_lengths,
        )
        loss = self.loss(output, batch.targets, src_lengths, batch.target_lengths)
        self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)
        return loss

    def configure_optimizers(self):
        return (
            [self.optimizer],
            [
                {"scheduler": self.warmup_lr_scheduler, "interval": "step"},
            ],
        )

    def forward(self, batch: Batch):
        decoder = RNNTBeamSearch(self.model, self.blank_idx)
        hypotheses = decoder(batch.features.to(self.device), batch.feature_lengths.to(self.device), 20)
        return post_process_hypos(hypotheses, self.sp_model)[0][0]

    def training_step(self, batch: Batch, batch_idx):
        return self._step(batch, batch_idx, "train")

    def validation_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "val")

    def test_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "test")

    def train_dataloader(self):
        dataset = CustomDataset(torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="train"), 100)
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=None,
            collate_fn=self._train_collate_fn,
            num_workers=10,
            shuffle=True,
        )
        return dataloader

    def val_dataloader(self):
        dataset = CustomDataset(torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="dev"), 100)
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=None,
            collate_fn=self._valid_collate_fn,
            num_workers=10,
        )
        return dataloader

    def test_dataloader(self):
        dataset = torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="test")
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
        return dataloader

    def dev_dataloader(self):
        dataset = torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="dev")
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
        return dataloader