speechcommands_test.py 6.5 KB
Newer Older
1
2
3
4
import os

from torchaudio.datasets import speechcommands

5
from torchaudio_unittest.common_utils import (
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    TempDirMixin,
    TorchaudioTestCase,
    get_whitenoise,
    normalize_wav,
    save_wav,
)

LABELS = [
    "bed",
    "bird",
    "cat",
    "dog",
    "down",
    "eight",
    "five",
    "follow",
    "forward",
    "four",
    "go",
    "happy",
    "house",
    "learn",
    "left",
    "marvin",
    "nine",
    "no",
    "off",
    "on",
    "one",
    "right",
    "seven",
    "sheila",
    "six",
    "stop",
    "three",
    "tree",
    "two",
    "up",
    "visual",
    "wow",
    "yes",
    "zero",
]


class TestSpeechCommands(TempDirMixin, TorchaudioTestCase):
    backend = "default"

    root_dir = None
    samples = []
56
57
58
    train_samples = []
    valid_samples = []
    test_samples = []
59
60

    @classmethod
61
    def setUpClass(cls):
62
63
64
65
66
67
68
        cls.root_dir = cls.get_base_temp_dir()
        dataset_dir = os.path.join(
            cls.root_dir, speechcommands.FOLDER_IN_ARCHIVE, speechcommands.URL
        )
        os.makedirs(dataset_dir, exist_ok=True)
        sample_rate = 16000  # 16kHz sample rate
        seed = 0
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        valid_file = os.path.join(dataset_dir, "validation_list.txt")
        test_file = os.path.join(dataset_dir, "testing_list.txt")
        with open(valid_file, "w") as valid, open(test_file, "w") as test:
            for label in LABELS:
                path = os.path.join(dataset_dir, label)
                os.makedirs(path, exist_ok=True)
                for j in range(6):
                    # generate hash ID for speaker
                    speaker = "{:08x}".format(j)

                    for utterance in range(3):
                        filename = f"{speaker}{speechcommands.HASH_DIVIDER}{utterance}.wav"
                        file_path = os.path.join(path, filename)
                        seed += 1
                        data = get_whitenoise(
                            sample_rate=sample_rate,
                            duration=0.01,
                            n_channels=1,
                            dtype="int16",
                            seed=seed,
                        )
                        save_wav(file_path, data, sample_rate)
                        sample = (
                            normalize_wav(data),
                            sample_rate,
                            label,
                            speaker,
                            utterance,
                        )
                        cls.samples.append(sample)
                        if j < 2:
                            cls.train_samples.append(sample)
                        elif j < 4:
                            valid.write(f'{label}/{filename}\n')
                            cls.valid_samples.append(sample)
                        elif j < 6:
                            test.write(f'{label}/{filename}\n')
                            cls.test_samples.append(sample)
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    def testSpeechCommands(self):
        dataset = speechcommands.SPEECHCOMMANDS(self.root_dir)

        num_samples = 0
        for i, (data, sample_rate, label, speaker_id, utterance_number) in enumerate(
            dataset
        ):
            self.assertEqual(data, self.samples[i][0], atol=5e-5, rtol=1e-8)
            assert sample_rate == self.samples[i][1]
            assert label == self.samples[i][2]
            assert speaker_id == self.samples[i][3]
            assert utterance_number == self.samples[i][4]
            num_samples += 1

        assert num_samples == len(self.samples)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    def testSpeechCommandsNone(self):
        dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset=None)

        num_samples = 0
        for i, (data, sample_rate, label, speaker_id, utterance_number) in enumerate(
            dataset
        ):
            self.assertEqual(data, self.samples[i][0], atol=5e-5, rtol=1e-8)
            assert sample_rate == self.samples[i][1]
            assert label == self.samples[i][2]
            assert speaker_id == self.samples[i][3]
            assert utterance_number == self.samples[i][4]
            num_samples += 1

        assert num_samples == len(self.samples)

    def testSpeechCommandsSubsetTrain(self):
        dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training")

        num_samples = 0
        for i, (data, sample_rate, label, speaker_id, utterance_number) in enumerate(
            dataset
        ):
            self.assertEqual(data, self.train_samples[i][0], atol=5e-5, rtol=1e-8)
            assert sample_rate == self.train_samples[i][1]
            assert label == self.train_samples[i][2]
            assert speaker_id == self.train_samples[i][3]
            assert utterance_number == self.train_samples[i][4]
            num_samples += 1

        assert num_samples == len(self.train_samples)

    def testSpeechCommandsSubsetValid(self):
        dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation")

        num_samples = 0
        for i, (data, sample_rate, label, speaker_id, utterance_number) in enumerate(
            dataset
        ):
            self.assertEqual(data, self.valid_samples[i][0], atol=5e-5, rtol=1e-8)
            assert sample_rate == self.valid_samples[i][1]
            assert label == self.valid_samples[i][2]
            assert speaker_id == self.valid_samples[i][3]
            assert utterance_number == self.valid_samples[i][4]
            num_samples += 1

        assert num_samples == len(self.valid_samples)

    def testSpeechCommandsSubsetTest(self):
        dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing")

        num_samples = 0
        for i, (data, sample_rate, label, speaker_id, utterance_number) in enumerate(
            dataset
        ):
            self.assertEqual(data, self.test_samples[i][0], atol=5e-5, rtol=1e-8)
            assert sample_rate == self.test_samples[i][1]
            assert label == self.test_samples[i][2]
            assert speaker_id == self.test_samples[i][3]
            assert utterance_number == self.test_samples[i][4]
            num_samples += 1

        assert num_samples == len(self.test_samples)

    def testSpeechCommandsSum(self):
        dataset_all = speechcommands.SPEECHCOMMANDS(self.root_dir)
        dataset_train = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training")
        dataset_valid = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation")
        dataset_test = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing")

        assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == len(dataset_all)