test_compliance_kaldi.py 10.6 KB
Newer Older
1
import os
moto's avatar
moto committed
2
3
4
import math
import unittest

5
6
7
import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi
8

9
10
from . import common_utils
from .compliance import utils as compliance_utils
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


def extract_window(window, wave, f, frame_length, frame_shift, snip_edges):
    # just a copy of ExtractWindow from feature-window.cc in python
    def first_sample_of_frame(frame, window_size, window_shift, snip_edges):
        if snip_edges:
            return frame * window_shift
        else:
            midpoint_of_frame = frame * window_shift + window_shift // 2
            beginning_of_frame = midpoint_of_frame - window_size // 2
            return beginning_of_frame

    sample_offset = 0
    num_samples = sample_offset + wave.size(0)
    start_sample = first_sample_of_frame(f, frame_length, frame_shift, snip_edges)
    end_sample = start_sample + frame_length

    if snip_edges:
        assert(start_sample >= sample_offset and end_sample <= num_samples)
    else:
        assert(sample_offset == 0 or start_sample >= sample_offset)

    wave_start = start_sample - sample_offset
    wave_end = wave_start + frame_length
    if wave_start >= 0 and wave_end <= wave.size(0):
        window[f, :] = wave[wave_start:(wave_start + frame_length)]
    else:
        wave_dim = wave.size(0)
        for s in range(frame_length):
            s_in_wave = s + wave_start
            while s_in_wave < 0 or s_in_wave >= wave_dim:
                if s_in_wave < 0:
                    s_in_wave = - s_in_wave - 1
                else:
                    s_in_wave = 2 * wave_dim - 1 - s_in_wave
            window[f, s] = wave[s_in_wave]


moto's avatar
moto committed
49
50
51
52
@common_utils.skipIfNoSoxBackend
class Test_Kaldi(common_utils.TorchaudioTestCase):
    backend = 'sox'

53
54
55
    test_filepath = common_utils.get_asset_path('kaldi_file.wav')
    test_8000_filepath = common_utils.get_asset_path('kaldi_file_8000.wav')
    kaldi_output_dir = common_utils.get_asset_path('kaldi')
56
    test_filepaths = {prefix: [] for prefix in compliance_utils.TEST_PREFIX}
jamarshon's avatar
jamarshon committed
57
58
59
60
61
62
63
64

    # separating test files by their types (e.g 'spec', 'fbank', etc.)
    for f in os.listdir(kaldi_output_dir):
        dash_idx = f.find('-')
        assert f.endswith('.ark') and dash_idx != -1
        key = f[:dash_idx]
        assert key in test_filepaths
        test_filepaths[key].append(f)
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

    def _test_get_strided_helper(self, num_samples, window_size, window_shift, snip_edges):
        waveform = torch.arange(num_samples).float()
        output = kaldi._get_strided(waveform, window_size, window_shift, snip_edges)

        # from NumFrames in feature-window.cc
        n = window_size
        if snip_edges:
            m = 0 if num_samples < window_size else 1 + (num_samples - window_size) // window_shift
        else:
            m = (num_samples + (window_shift // 2)) // window_shift

        self.assertTrue(output.dim() == 2)
        self.assertTrue(output.shape[0] == m and output.shape[1] == n)

        window = torch.empty((m, window_size))

        for r in range(m):
            extract_window(window, waveform, r, window_size, window_shift, snip_edges)
84
        torch.testing.assert_allclose(window, output)
85
86
87
88
89
90
91
92
93
94
95
96

    def test_get_strided(self):
        # generate any combination where 0 < window_size <= num_samples and
        # 0 < window_shift.
        for num_samples in range(1, 20):
            for window_size in range(1, num_samples + 1):
                for window_shift in range(1, 2 * num_samples + 1):
                    for snip_edges in range(0, 2):
                        self._test_get_strided_helper(num_samples, window_size, window_shift, snip_edges)

    def _create_data_set(self):
        # used to generate the dataset to test on. this is not used in testing (offline procedure)
97
        test_filepath = common_utils.get_asset_path('kaldi_file.wav')
98
99
100
101
102
103
104
105
106
107
108
109
        sr = 16000
        x = torch.arange(0, 20).float()
        # between [-6,6]
        y = torch.cos(2 * math.pi * x) + 3 * torch.sin(math.pi * x) + 2 * torch.cos(x)
        # between [-2^30, 2^30]
        y = (y / 6 * (1 << 30)).long()
        # clear the last 16 bits because they aren't used anyways
        y = ((y >> 16) << 16).float()
        torchaudio.save(test_filepath, y, sr)
        sound, sample_rate = torchaudio.load(test_filepath, normalization=False)
        print(y >> 16)
        self.assertTrue(sample_rate == sr)
110
        torch.testing.assert_allclose(y, sound)
111

jamarshon's avatar
jamarshon committed
112
113
114
115
116
117
118
119
120
121
122
123
124
    def _print_diagnostic(self, output, expect_output):
        # given an output and expected output, it will print the absolute/relative errors (max and mean squared)
        abs_error = output - expect_output
        abs_mse = abs_error.pow(2).sum() / output.numel()
        abs_max_error = torch.max(abs_error.abs())

        relative_error = abs_error / expect_output
        relative_mse = relative_error.pow(2).sum() / output.numel()
        relative_max_error = torch.max(relative_error.abs())

        print('abs_mse:', abs_mse.item(), 'abs_max_error:', abs_max_error.item())
        print('relative_mse:', relative_mse.item(), 'relative_max_error:', relative_max_error.item())

jamarshon's avatar
jamarshon committed
125
126
    def _compliance_test_helper(self, sound_filepath, filepath_key, expected_num_files,
                                expected_num_args, get_output_fn, atol=1e-5, rtol=1e-8):
jamarshon's avatar
jamarshon committed
127
128
        """
        Inputs:
jamarshon's avatar
jamarshon committed
129
            sound_filepath (str): The location of the sound file
jamarshon's avatar
jamarshon committed
130
131
132
133
134
            filepath_key (str): A key to `test_filepaths` which matches which files to use
            expected_num_files (int): The expected number of kaldi files to read
            expected_num_args (int): The expected number of arguments used in a kaldi configuration
            get_output_fn (Callable[[Tensor, List], Tensor]): A function that takes in a sound signal
                and a configuration and returns an output
jamarshon's avatar
jamarshon committed
135
136
            atol (float): absolute tolerance
            rtol (float): relative tolerance
jamarshon's avatar
jamarshon committed
137
        """
jamarshon's avatar
jamarshon committed
138
        sound, sample_rate = torchaudio.load_wav(sound_filepath)
jamarshon's avatar
jamarshon committed
139
140
141
        files = self.test_filepaths[filepath_key]

        assert len(files) == expected_num_files, ('number of kaldi %s file changed to %d' % (filepath_key, len(files)))
142
143
144

        for f in files:
            print(f)
jamarshon's avatar
jamarshon committed
145
146
147

            # Read kaldi's output from file
            kaldi_output_path = os.path.join(self.kaldi_output_dir, f)
148
149
150
151
152
            kaldi_output_dict = {k: v for k, v in torchaudio.kaldi_io.read_mat_ark(kaldi_output_path)}

            assert len(kaldi_output_dict) == 1 and 'my_id' in kaldi_output_dict, 'invalid test kaldi ark file'
            kaldi_output = kaldi_output_dict['my_id']

jamarshon's avatar
jamarshon committed
153
            # Construct the same configuration used by kaldi
154
155
            args = f.split('-')
            args[-1] = os.path.splitext(args[-1])[0]
jamarshon's avatar
jamarshon committed
156
            assert len(args) == expected_num_args, 'invalid test kaldi file name'
157
            args = [compliance_utils.parse(arg) for arg in args]
158

jamarshon's avatar
jamarshon committed
159
160
161
            output = get_output_fn(sound, args)

            self._print_diagnostic(output, kaldi_output)
162
            torch.testing.assert_allclose(output, kaldi_output, atol=atol, rtol=rtol)
jamarshon's avatar
jamarshon committed
163

jamarshon's avatar
jamarshon committed
164
165
166
167
    def test_mfcc_empty(self):
        # Passing in an empty tensor should result in an error
        self.assertRaises(AssertionError, kaldi.mfcc, torch.empty(0))

jamarshon's avatar
jamarshon committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    def test_resample_waveform(self):
        def get_output_fn(sound, args):
            output = kaldi.resample_waveform(sound, args[1], args[2])
            return output

        self._compliance_test_helper(self.test_8000_filepath, 'resample', 32, 3, get_output_fn, atol=1e-2, rtol=1e-5)

    def test_resample_waveform_upsample_size(self):
        sound, sample_rate = torchaudio.load_wav(self.test_8000_filepath)
        upsample_sound = kaldi.resample_waveform(sound, sample_rate, sample_rate * 2)
        self.assertTrue(upsample_sound.size(-1) == sound.size(-1) * 2)

    def test_resample_waveform_downsample_size(self):
        sound, sample_rate = torchaudio.load_wav(self.test_8000_filepath)
        downsample_sound = kaldi.resample_waveform(sound, sample_rate, sample_rate // 2)
        self.assertTrue(downsample_sound.size(-1) == sound.size(-1) // 2)

    def test_resample_waveform_identity_size(self):
        sound, sample_rate = torchaudio.load_wav(self.test_8000_filepath)
        downsample_sound = kaldi.resample_waveform(sound, sample_rate, sample_rate)
        self.assertTrue(downsample_sound.size(-1) == sound.size(-1))

    def _test_resample_waveform_accuracy(self, up_scale_factor=None, down_scale_factor=None,
                                         atol=1e-1, rtol=1e-4):
        # resample the signal and compare it to the ground truth
        n_to_trim = 20
        sample_rate = 1000
        new_sample_rate = sample_rate

        if up_scale_factor is not None:
            new_sample_rate *= up_scale_factor

        if down_scale_factor is not None:
            new_sample_rate //= down_scale_factor

        duration = 5  # seconds
        original_timestamps = torch.arange(0, duration, 1.0 / sample_rate)

        sound = 123 * torch.cos(2 * math.pi * 3 * original_timestamps).unsqueeze(0)
        estimate = kaldi.resample_waveform(sound, sample_rate, new_sample_rate).squeeze()

        new_timestamps = torch.arange(0, duration, 1.0 / new_sample_rate)[:estimate.size(0)]
        ground_truth = 123 * torch.cos(2 * math.pi * 3 * new_timestamps)

        # trim the first/last n samples as these points have boundary effects
        ground_truth = ground_truth[..., n_to_trim:-n_to_trim]
        estimate = estimate[..., n_to_trim:-n_to_trim]

216
        torch.testing.assert_allclose(estimate, ground_truth, atol=atol, rtol=rtol)
jamarshon's avatar
jamarshon committed
217
218
219
220
221
222
223
224

    def test_resample_waveform_downsample_accuracy(self):
        for i in range(1, 20):
            self._test_resample_waveform_accuracy(down_scale_factor=i * 2)

    def test_resample_waveform_upsample_accuracy(self):
        for i in range(1, 20):
            self._test_resample_waveform_accuracy(up_scale_factor=1.0 + i / 20.0)
225

jamarshon's avatar
jamarshon committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    def test_resample_waveform_multi_channel(self):
        num_channels = 3

        sound, sample_rate = torchaudio.load_wav(self.test_8000_filepath)  # (1, 8000)
        multi_sound = sound.repeat(num_channels, 1)  # (num_channels, 8000)

        for i in range(num_channels):
            multi_sound[i, :] *= (i + 1) * 1.5

        multi_sound_sampled = kaldi.resample_waveform(multi_sound, sample_rate, sample_rate // 2)

        # check that sampling is same whether using separately or in a tensor of size (c, n)
        for i in range(num_channels):
            single_channel = sound * (i + 1) * 1.5
            single_channel_sampled = kaldi.resample_waveform(single_channel, sample_rate, sample_rate // 2)
241
            torch.testing.assert_allclose(multi_sound_sampled[i, :], single_channel_sampled[0], rtol=1e-4, atol=1e-8)
242

Vincent QB's avatar
Vincent QB committed
243

244
245
if __name__ == '__main__':
    unittest.main()