test_jit.py 8.68 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import torch
import torchaudio.functional as F
import torchaudio.transforms as transforms
import unittest

RUN_CUDA = torch.cuda.is_available()
print('Run test with cuda:', RUN_CUDA)


class Test_JIT(unittest.TestCase):
    def _get_script_module(self, f, *args):
        # takes a transform function `f` and wraps it in a script module
        class MyModule(torch.jit.ScriptModule):
            def __init__(self):
                super(MyModule, self).__init__()
                self.module = f(*args)
                self.module.eval()

            @torch.jit.script_method
            def forward(self, tensor):
                return self.module(tensor)

        return MyModule()

    def _test_script_module(self, tensor, f, *args):
        # tests a script module that wraps a transform function `f` by feeding
        # the tensor into the forward function
        jit_out = self._get_script_module(f, *args).cuda()(tensor)
        py_out = f(*args).cuda()(tensor)

        self.assertTrue(torch.allclose(jit_out, py_out))

    def test_torchscript_scale(self):
        @torch.jit.script
        def jit_method(tensor, factor):
            # type: (Tensor, int) -> Tensor
            return F.scale(tensor, factor)

        tensor = torch.rand((10, 1))
        factor = 2

        jit_out = jit_method(tensor, factor)
        py_out = F.scale(tensor, factor)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_scale(self):
        tensor = torch.rand((10, 1), device="cuda")

        self._test_script_module(tensor, transforms.Scale)

    def test_torchscript_pad_trim(self):
        @torch.jit.script
        def jit_method(tensor, ch_dim, max_len, len_dim, fill_value):
            # type: (Tensor, int, int, int, float) -> Tensor
            return F.pad_trim(tensor, ch_dim, max_len, len_dim, fill_value)

        tensor = torch.rand((10, 1))
        ch_dim = 1
        max_len = 5
        len_dim = 0
        fill_value = 3.

        jit_out = jit_method(tensor, ch_dim, max_len, len_dim, fill_value)
        py_out = F.pad_trim(tensor, ch_dim, max_len, len_dim, fill_value)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_pad_trim(self):
        tensor = torch.rand((1, 10), device="cuda")
        max_len = 5

        self._test_script_module(tensor, transforms.PadTrim, max_len)

    def test_torchscript_downmix_mono(self):
        @torch.jit.script
        def jit_method(tensor, ch_dim):
            # type: (Tensor, int) -> Tensor
            return F.downmix_mono(tensor, ch_dim)

        tensor = torch.rand((10, 1))
        ch_dim = 1

        jit_out = jit_method(tensor, ch_dim)
        py_out = F.downmix_mono(tensor, ch_dim)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_downmix_mono(self):
        tensor = torch.rand((1, 10), device="cuda")

        self._test_script_module(tensor, transforms.DownmixMono)

    def test_torchscript_LC2CL(self):
        @torch.jit.script
        def jit_method(tensor):
            # type: (Tensor) -> Tensor
            return F.LC2CL(tensor)

        tensor = torch.rand((10, 1))

        jit_out = jit_method(tensor)
        py_out = F.LC2CL(tensor)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_LC2CL(self):
        tensor = torch.rand((10, 1), device="cuda")

        self._test_script_module(tensor, transforms.LC2CL)

    def test_torchscript_spectrogram(self):
        @torch.jit.script
        def jit_method(sig, pad, window, n_fft, hop, ws, power, normalize):
            # type: (Tensor, int, Tensor, int, int, int, int, bool) -> Tensor
            return F.spectrogram(sig, pad, window, n_fft, hop, ws, power, normalize)

        tensor = torch.rand((1, 1000))
        n_fft = 400
        ws = 400
        hop = 200
        pad = 0
        window = torch.hann_window(ws)
        power = 2
        normalize = False

        jit_out = jit_method(tensor, pad, window, n_fft, hop, ws, power, normalize)
        py_out = F.spectrogram(tensor, pad, window, n_fft, hop, ws, power, normalize)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_Spectrogram(self):
        tensor = torch.rand((1, 1000), device="cuda")

        self._test_script_module(tensor, transforms.Spectrogram)

    def test_torchscript_create_fb_matrix(self):
        @torch.jit.script
        def jit_method(n_stft, f_min, f_max, n_mels):
            # type: (int, float, float, int) -> Tensor
            return F.create_fb_matrix(n_stft, f_min, f_max, n_mels)

        n_stft = 100
        f_min = 0.
        f_max = 20.
        n_mels = 10

        jit_out = jit_method(n_stft, f_min, f_max, n_mels)
        py_out = F.create_fb_matrix(n_stft, f_min, f_max, n_mels)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MelScale(self):
        spec_f = torch.rand((1, 6, 201), device="cuda")

        self._test_script_module(spec_f, transforms.MelScale)

    def test_torchscript_spectrogram_to_DB(self):
        @torch.jit.script
        def jit_method(spec, multiplier, amin, db_multiplier, top_db):
            # type: (Tensor, float, float, float, Optional[float]) -> Tensor
            return F.spectrogram_to_DB(spec, multiplier, amin, db_multiplier, top_db)

        spec = torch.rand((10, 1))
        multiplier = 10.
        amin = 1e-10
        db_multiplier = 0.
        top_db = 80.

        jit_out = jit_method(spec, multiplier, amin, db_multiplier, top_db)
        py_out = F.spectrogram_to_DB(spec, multiplier, amin, db_multiplier, top_db)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_SpectrogramToDB(self):
        spec = torch.rand((10, 1), device="cuda")

        self._test_script_module(spec, transforms.SpectrogramToDB)

    def test_torchscript_create_dct(self):
        @torch.jit.script
        def jit_method(n_mfcc, n_mels, norm):
            # type: (int, int, Optional[str]) -> Tensor
            return F.create_dct(n_mfcc, n_mels, norm)

        n_mfcc = 40
        n_mels = 128
        norm = 'ortho'

        jit_out = jit_method(n_mfcc, n_mels, norm)
        py_out = F.create_dct(n_mfcc, n_mels, norm)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MFCC(self):
        tensor = torch.rand((1, 1000), device="cuda")

        self._test_script_module(tensor, transforms.MFCC)

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MelSpectrogram(self):
        tensor = torch.rand((1, 1000), device="cuda")

        self._test_script_module(tensor, transforms.MelSpectrogram)

    def test_torchscript_BLC2CBL(self):
        @torch.jit.script
        def jit_method(tensor):
            # type: (Tensor) -> Tensor
            return F.BLC2CBL(tensor)

        tensor = torch.rand((10, 1000, 1))

        jit_out = jit_method(tensor)
        py_out = F.BLC2CBL(tensor)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_BLC2CBL(self):
        tensor = torch.rand((10, 1000, 1), device="cuda")

        self._test_script_module(tensor, transforms.BLC2CBL)

    def test_torchscript_mu_law_encoding(self):
        @torch.jit.script
        def jit_method(tensor, qc):
            # type: (Tensor, int) -> Tensor
            return F.mu_law_encoding(tensor, qc)

        tensor = torch.rand((10, 1))
        qc = 256

        jit_out = jit_method(tensor, qc)
        py_out = F.mu_law_encoding(tensor, qc)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MuLawEncoding(self):
        tensor = torch.rand((10, 1), device="cuda")

        self._test_script_module(tensor, transforms.MuLawEncoding)

    def test_torchscript_mu_law_expanding(self):
        @torch.jit.script
        def jit_method(tensor, qc):
            # type: (Tensor, int) -> Tensor
            return F.mu_law_expanding(tensor, qc)

        tensor = torch.rand((10, 1))
        qc = 256

        jit_out = jit_method(tensor, qc)
        py_out = F.mu_law_expanding(tensor, qc)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MuLawExpanding(self):
        tensor = torch.rand((10, 1), device="cuda")

        self._test_script_module(tensor, transforms.MuLawExpanding)


if __name__ == '__main__':
    unittest.main()