functional_cpu_test.py 14.6 KB
Newer Older
jamarshon's avatar
jamarshon committed
1
import math
2
import unittest
jamarshon's avatar
jamarshon committed
3
4
5

import torch
import torchaudio
6
7
import torchaudio.functional as F
import pytest
jamarshon's avatar
jamarshon committed
8

9
from . import common_utils
10
from .functional_impl import Lfilter
11

jamarshon's avatar
jamarshon committed
12

moto's avatar
moto committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def random_float_tensor(seed, size, a=22695477, c=1, m=2 ** 32):
    """ Generates random tensors given a seed and size
    https://en.wikipedia.org/wiki/Linear_congruential_generator
    X_{n + 1} = (a * X_n + c) % m
    Using Borland C/C++ values

    The tensor will have values between [0,1)
    Inputs:
        seed (int): an int
        size (Tuple[int]): the size of the output tensor
        a (int): the multiplier constant to the generator
        c (int): the additive constant to the generator
        m (int): the modulus constant to the generator
    """
    num_elements = 1
    for s in size:
        num_elements *= s

    arr = [(a * seed + c) % m]
    for i in range(num_elements - 1):
        arr.append((a * arr[i] + c) % m)

    return torch.tensor(arr).float().view(size) / m


moto's avatar
moto committed
38
class TestLFilterFloat32(Lfilter, common_utils.PytorchTestCase):
39
40
    dtype = torch.float32
    device = torch.device('cpu')
41
42


moto's avatar
moto committed
43
class TestLFilterFloat64(Lfilter, common_utils.PytorchTestCase):
44
45
    dtype = torch.float64
    device = torch.device('cpu')
46
47


moto's avatar
moto committed
48
class TestComputeDeltas(common_utils.TorchaudioTestCase):
moto's avatar
moto committed
49
50
51
52
53
    """Test suite for correctness of compute_deltas"""
    def test_one_channel(self):
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0]]])
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5]]])
        computed = F.compute_deltas(specgram, win_length=3)
54
        torch.testing.assert_allclose(computed, expected)
Vincent QB's avatar
Vincent QB committed
55

moto's avatar
moto committed
56
57
58
59
60
61
    def test_two_channels(self):
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0],
                                  [1.0, 2.0, 3.0, 4.0]]])
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5],
                                  [0.5, 1.0, 1.0, 0.5]]])
        computed = F.compute_deltas(specgram, win_length=3)
62
        torch.testing.assert_allclose(computed, expected)
63

Vincent QB's avatar
Vincent QB committed
64

moto's avatar
moto committed
65
66
67
def _compare_estimate(sound, estimate, atol=1e-6, rtol=1e-8):
    # trim sound for case when constructed signal is shorter than original
    sound = sound[..., :estimate.size(-1)]
68
    torch.testing.assert_allclose(estimate, sound, atol=atol, rtol=rtol)
Vincent QB's avatar
Vincent QB committed
69
70


moto's avatar
moto committed
71
72
73
74
75
def _test_istft_is_inverse_of_stft(kwargs):
    # generates a random sound signal for each tril and then does the stft/istft
    # operation to check whether we can reconstruct signal
    for data_size in [(2, 20), (3, 15), (4, 10)]:
        for i in range(100):
jamarshon's avatar
jamarshon committed
76

moto's avatar
moto committed
77
            sound = random_float_tensor(i, data_size)
jamarshon's avatar
jamarshon committed
78

moto's avatar
moto committed
79
80
            stft = torch.stft(sound, **kwargs)
            estimate = torchaudio.functional.istft(stft, length=sound.size(1), **kwargs)
Vincent QB's avatar
Vincent QB committed
81

moto's avatar
moto committed
82
            _compare_estimate(sound, estimate)
jamarshon's avatar
jamarshon committed
83
84


moto's avatar
moto committed
85
class TestIstft(common_utils.TorchaudioTestCase):
moto's avatar
moto committed
86
87
    """Test suite for correctness of istft with various input"""
    number_of_trials = 100
jamarshon's avatar
jamarshon committed
88
89
90
91
92
93
94
95
96
97
98
99
100

    def test_istft_is_inverse_of_stft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'hop_length': 4,
            'win_length': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
moto's avatar
moto committed
101
        _test_istft_is_inverse_of_stft(kwargs1)
jamarshon's avatar
jamarshon committed
102
103
104
105
106
107
108
109
110
111
112
113
114

    def test_istft_is_inverse_of_stft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'hop_length': 2,
            'win_length': 8,
            'window': torch.hann_window(8),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
moto's avatar
moto committed
115
        _test_istft_is_inverse_of_stft(kwargs2)
jamarshon's avatar
jamarshon committed
116
117
118
119
120
121
122
123
124
125
126
127
128

    def test_istft_is_inverse_of_stft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 15,
            'hop_length': 3,
            'win_length': 11,
            'window': torch.hamming_window(11),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
moto's avatar
moto committed
129
        _test_istft_is_inverse_of_stft(kwargs3)
jamarshon's avatar
jamarshon committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    def test_istft_is_inverse_of_stft4(self):
        # hamming_window, not centered, not normalized, onesided
        # window same size as n_fft
        kwargs4 = {
            'n_fft': 5,
            'hop_length': 2,
            'win_length': 5,
            'window': torch.hamming_window(5),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
moto's avatar
moto committed
144
        _test_istft_is_inverse_of_stft(kwargs4)
jamarshon's avatar
jamarshon committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    def test_istft_is_inverse_of_stft5(self):
        # hamming_window, not centered, not normalized, not onesided
        # window same size as n_fft
        kwargs5 = {
            'n_fft': 3,
            'hop_length': 2,
            'win_length': 3,
            'window': torch.hamming_window(3),
            'center': False,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
moto's avatar
moto committed
159
        _test_istft_is_inverse_of_stft(kwargs5)
jamarshon's avatar
jamarshon committed
160
161
162
163
164
165
166
167
168
169

    def test_istft_of_ones(self):
        # stft = torch.stft(torch.ones(4), 4)
        stft = torch.tensor([
            [[4., 0.], [4., 0.], [4., 0.], [4., 0.], [4., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]]
        ])

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
moto's avatar
moto committed
170
        _compare_estimate(torch.ones(4), estimate)
jamarshon's avatar
jamarshon committed
171
172
173
174
175
176

    def test_istft_of_zeros(self):
        # stft = torch.stft(torch.zeros(4), 4)
        stft = torch.zeros((3, 5, 2))

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
moto's avatar
moto committed
177
        _compare_estimate(torch.zeros(4), estimate)
jamarshon's avatar
jamarshon committed
178
179
180
181

    def test_istft_requires_overlap_windows(self):
        # the window is size 1 but it hops 20 so there is a gap which throw an error
        stft = torch.zeros((3, 5, 2))
moto's avatar
moto committed
182
        self.assertRaises(RuntimeError, torchaudio.functional.istft, stft, n_fft=4,
jamarshon's avatar
jamarshon committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                          hop_length=20, win_length=1, window=torch.ones(1))

    def test_istft_requires_nola(self):
        stft = torch.zeros((3, 5, 2))
        kwargs_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.ones(4),
        }

        kwargs_not_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.zeros(4),
        }

        # A window of ones meets NOLA but a window of zeros does not. This should
        # throw an error.
        torchaudio.functional.istft(stft, **kwargs_ok)
moto's avatar
moto committed
202
        self.assertRaises(RuntimeError, torchaudio.functional.istft, stft, **kwargs_not_ok)
jamarshon's avatar
jamarshon committed
203
204

    def test_istft_requires_non_empty(self):
moto's avatar
moto committed
205
206
        self.assertRaises(RuntimeError, torchaudio.functional.istft, torch.zeros((3, 0, 2)), 2)
        self.assertRaises(RuntimeError, torchaudio.functional.istft, torch.zeros((0, 3, 2)), 2)
jamarshon's avatar
jamarshon committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

    def _test_istft_of_sine(self, amplitude, L, n):
        # stft of amplitude*sin(2*pi/L*n*x) with the hop length and window size equaling L
        x = torch.arange(2 * L + 1, dtype=torch.get_default_dtype())
        sound = amplitude * torch.sin(2 * math.pi / L * x * n)
        # stft = torch.stft(sound, L, hop_length=L, win_length=L,
        #                   window=torch.ones(L), center=False, normalized=False)
        stft = torch.zeros((L // 2 + 1, 2, 2))
        stft_largest_val = (amplitude * L) / 2.0
        if n < stft.size(0):
            stft[n, :, 1] = -stft_largest_val

        if 0 <= L - n < stft.size(0):
            # symmetric about L // 2
            stft[L - n, :, 1] = stft_largest_val

        estimate = torchaudio.functional.istft(stft, L, hop_length=L, win_length=L,
                                               window=torch.ones(L), center=False, normalized=False)
        # There is a larger error due to the scaling of amplitude
moto's avatar
moto committed
226
        _compare_estimate(sound, estimate, atol=1e-3)
jamarshon's avatar
jamarshon committed
227
228
229
230
231
232
233
234
235
236

    def test_istft_of_sine(self):
        self._test_istft_of_sine(amplitude=123, L=5, n=1)
        self._test_istft_of_sine(amplitude=150, L=5, n=2)
        self._test_istft_of_sine(amplitude=111, L=5, n=3)
        self._test_istft_of_sine(amplitude=160, L=7, n=4)
        self._test_istft_of_sine(amplitude=145, L=8, n=5)
        self._test_istft_of_sine(amplitude=80, L=9, n=6)
        self._test_istft_of_sine(amplitude=99, L=10, n=7)

237
238
    def _test_linearity_of_istft(self, data_size, kwargs, atol=1e-6, rtol=1e-8):
        for i in range(self.number_of_trials):
moto's avatar
moto committed
239
240
            tensor1 = random_float_tensor(i, data_size)
            tensor2 = random_float_tensor(i * 2, data_size)
241
242
243
244
245
            a, b = torch.rand(2)
            istft1 = torchaudio.functional.istft(tensor1, **kwargs)
            istft2 = torchaudio.functional.istft(tensor2, **kwargs)
            istft = a * istft1 + b * istft2
            estimate = torchaudio.functional.istft(a * tensor1 + b * tensor2, **kwargs)
moto's avatar
moto committed
246
            _compare_estimate(istft, estimate, atol, rtol)
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

    def test_linearity_of_istft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
        data_size = (2, 7, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs1)

    def test_linearity_of_istft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs2)

    def test_linearity_of_istft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs3)

    def test_linearity_of_istft4(self):
        # hamming_window, not centered, not normalized, onesided
        kwargs4 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
        data_size = (2, 7, 3, 2)
        self._test_linearity_of_istft(data_size, kwargs4, atol=1e-5, rtol=1e-8)

moto's avatar
moto committed
300

moto's avatar
moto committed
301
302
303
class TestDetectPitchFrequency(common_utils.TorchaudioTestCase):
    backend = 'default'

304
    def test_pitch(self):
305
306
        test_filepath_100 = common_utils.get_asset_path("100Hz_44100Hz_16bit_05sec.wav")
        test_filepath_440 = common_utils.get_asset_path("440Hz_44100Hz_16bit_05sec.wav")
Vincent QB's avatar
Vincent QB committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

        # Files from https://www.mediacollege.com/audio/tone/download/
        tests = [
            (test_filepath_100, 100),
            (test_filepath_440, 440),
        ]

        for filename, freq_ref in tests:
            waveform, sample_rate = torchaudio.load(filename)

            freq = torchaudio.functional.detect_pitch_frequency(waveform, sample_rate)

            threshold = 1
            s = ((freq - freq_ref).abs() > threshold).sum()
            self.assertFalse(s)

moto's avatar
moto committed
323

moto's avatar
moto committed
324
class TestDB_to_amplitude(common_utils.TorchaudioTestCase):
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    def test_DB_to_amplitude(self):
        # Make some noise
        x = torch.rand(1000)
        spectrogram = torchaudio.transforms.Spectrogram()
        spec = spectrogram(x)

        amin = 1e-10
        ref = 1.0
        db_multiplier = math.log10(max(amin, ref))

        # Waveform amplitude -> DB -> amplitude
        multiplier = 20.
        power = 0.5

        db = F.amplitude_to_DB(torch.abs(x), multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

342
        torch.testing.assert_allclose(x2, torch.abs(x), atol=5e-5, rtol=1e-5)
343
344
345
346
347

        # Spectrogram amplitude -> DB -> amplitude
        db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

348
        torch.testing.assert_allclose(x2, spec, atol=5e-5, rtol=1e-5)
349
350
351
352
353
354
355
356

        # Waveform power -> DB -> power
        multiplier = 10.
        power = 1.

        db = F.amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

357
        torch.testing.assert_allclose(x2, torch.abs(x), atol=5e-5, rtol=1e-5)
358
359
360
361
362

        # Spectrogram power -> DB -> power
        db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

363
        torch.testing.assert_allclose(x2, spec, atol=5e-5, rtol=1e-5)
364

365
366
367
368
369
370
371
372
373
374

@pytest.mark.parametrize('complex_tensor', [
    torch.randn(1, 2, 1025, 400, 2),
    torch.randn(1025, 400, 2)
])
@pytest.mark.parametrize('power', [1, 2, 0.7])
def test_complex_norm(complex_tensor, power):
    expected_norm_tensor = complex_tensor.pow(2).sum(-1).pow(power / 2)
    norm_tensor = F.complex_norm(complex_tensor, power)

375
    torch.testing.assert_allclose(norm_tensor, expected_norm_tensor, atol=1e-5, rtol=1e-5)
376
377


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
@pytest.mark.parametrize('specgram', [
    torch.randn(2, 1025, 400),
    torch.randn(1, 201, 100)
])
@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [1, 2])
def test_mask_along_axis(specgram, mask_param, mask_value, axis):

    mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis)

    other_axis = 1 if axis == 2 else 2

    masked_columns = (mask_specgram == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgram.size(other_axis)).sum()
moto's avatar
moto committed
393
    num_masked_columns //= mask_specgram.size(0)
394
395
396
397
398
399
400
401

    assert mask_specgram.size() == specgram.size()
    assert num_masked_columns < mask_param


@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [2, 3])
402
403
404
def test_mask_along_axis_iid(mask_param, mask_value, axis):
    torch.random.manual_seed(42)
    specgrams = torch.randn(4, 2, 1025, 400)
405
406
407
408
409
410
411
412
413
414
415
416

    mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)

    other_axis = 2 if axis == 3 else 3

    masked_columns = (mask_specgrams == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgrams.size(other_axis)).sum(-1)

    assert mask_specgrams.size() == specgrams.size()
    assert (num_masked_columns < mask_param).sum() == num_masked_columns.numel()


jamarshon's avatar
jamarshon committed
417
418
if __name__ == '__main__':
    unittest.main()