"megatron/training/wandb_utils.py" did not exist on "b01809dd73ffc9a42f92c82088fce5b581d9ca74"
autograd_impl.py 9.63 KB
Newer Older
flyingdown's avatar
flyingdown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from typing import Callable, Tuple
from functools import partial
import torch
from parameterized import parameterized
from torch import Tensor
import torchaudio.functional as F
from torch.autograd import gradcheck, gradgradcheck
from torchaudio_unittest.common_utils import (
    TestBaseMixin,
    get_whitenoise,
    rnnt_utils,
)


class Autograd(TestBaseMixin):
    def assert_grad(
            self,
            transform: Callable[..., Tensor],
            inputs: Tuple[torch.Tensor],
            *,
            enable_all_grad: bool = True,
    ):
        inputs_ = []
        for i in inputs:
            if torch.is_tensor(i):
                i = i.to(dtype=self.dtype, device=self.device)
                if enable_all_grad:
                    i.requires_grad = True
            inputs_.append(i)
        assert gradcheck(transform, inputs_)
        assert gradgradcheck(transform, inputs_)

    def test_lfilter_x(self):
        torch.random.manual_seed(2434)
        x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
        a = torch.tensor([0.7, 0.2, 0.6])
        b = torch.tensor([0.4, 0.2, 0.9])
        x.requires_grad = True
        self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)

    def test_lfilter_a(self):
        torch.random.manual_seed(2434)
        x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
        a = torch.tensor([0.7, 0.2, 0.6])
        b = torch.tensor([0.4, 0.2, 0.9])
        a.requires_grad = True
        self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)

    def test_lfilter_b(self):
        torch.random.manual_seed(2434)
        x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
        a = torch.tensor([0.7, 0.2, 0.6])
        b = torch.tensor([0.4, 0.2, 0.9])
        b.requires_grad = True
        self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)

    def test_lfilter_all_inputs(self):
        torch.random.manual_seed(2434)
        x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
        a = torch.tensor([0.7, 0.2, 0.6])
        b = torch.tensor([0.4, 0.2, 0.9])
        self.assert_grad(F.lfilter, (x, a, b))

    def test_lfilter_filterbanks(self):
        torch.random.manual_seed(2434)
        x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=3)
        a = torch.tensor([[0.7, 0.2, 0.6],
                          [0.8, 0.2, 0.9]])
        b = torch.tensor([[0.4, 0.2, 0.9],
                          [0.7, 0.2, 0.6]])
        self.assert_grad(partial(F.lfilter, batching=False), (x, a, b))

    def test_lfilter_batching(self):
        torch.random.manual_seed(2434)
        x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
        a = torch.tensor([[0.7, 0.2, 0.6],
                          [0.8, 0.2, 0.9]])
        b = torch.tensor([[0.4, 0.2, 0.9],
                          [0.7, 0.2, 0.6]])
        self.assert_grad(F.lfilter, (x, a, b))

    def test_filtfilt_a(self):
        torch.random.manual_seed(2434)
        x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
        a = torch.tensor([0.7, 0.2, 0.6])
        b = torch.tensor([0.4, 0.2, 0.9])
        a.requires_grad = True
        self.assert_grad(F.filtfilt, (x, a, b), enable_all_grad=False)

    def test_filtfilt_b(self):
        torch.random.manual_seed(2434)
        x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
        a = torch.tensor([0.7, 0.2, 0.6])
        b = torch.tensor([0.4, 0.2, 0.9])
        b.requires_grad = True
        self.assert_grad(F.filtfilt, (x, a, b), enable_all_grad=False)

    def test_filtfilt_all_inputs(self):
        torch.random.manual_seed(2434)
        x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
        a = torch.tensor([0.7, 0.2, 0.6])
        b = torch.tensor([0.4, 0.2, 0.9])
        self.assert_grad(F.filtfilt, (x, a, b))

    def test_filtfilt_batching(self):
        torch.random.manual_seed(2434)
        x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
        a = torch.tensor([[0.7, 0.2, 0.6],
                          [0.8, 0.2, 0.9]])
        b = torch.tensor([[0.4, 0.2, 0.9],
                          [0.7, 0.2, 0.6]])
        self.assert_grad(F.filtfilt, (x, a, b))

    def test_biquad(self):
        torch.random.manual_seed(2434)
        x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=1)
        a = torch.tensor([0.7, 0.2, 0.6])
        b = torch.tensor([0.4, 0.2, 0.9])
        self.assert_grad(F.biquad, (x, b[0], b[1], b[2], a[0], a[1], a[2]))

    @parameterized.expand([
        (800, 0.7, True),
        (800, 0.7, False),
    ])
    def test_band_biquad(self, central_freq, Q, noise):
        torch.random.manual_seed(2434)
        sr = 22050
        x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
        central_freq = torch.tensor(central_freq)
        Q = torch.tensor(Q)
        self.assert_grad(F.band_biquad, (x, sr, central_freq, Q, noise))

    @parameterized.expand([
        (800, 0.7, 10),
        (800, 0.7, -10),
    ])
    def test_bass_biquad(self, central_freq, Q, gain):
        torch.random.manual_seed(2434)
        sr = 22050
        x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
        central_freq = torch.tensor(central_freq)
        Q = torch.tensor(Q)
        gain = torch.tensor(gain)
        self.assert_grad(F.bass_biquad, (x, sr, gain, central_freq, Q))

    @parameterized.expand([
        (3000, 0.7, 10),
        (3000, 0.7, -10),

    ])
    def test_treble_biquad(self, central_freq, Q, gain):
        torch.random.manual_seed(2434)
        sr = 22050
        x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
        central_freq = torch.tensor(central_freq)
        Q = torch.tensor(Q)
        gain = torch.tensor(gain)
        self.assert_grad(F.treble_biquad, (x, sr, gain, central_freq, Q))

    @parameterized.expand([
        (800, 0.7, ),
    ])
    def test_allpass_biquad(self, central_freq, Q):
        torch.random.manual_seed(2434)
        sr = 22050
        x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
        central_freq = torch.tensor(central_freq)
        Q = torch.tensor(Q)
        self.assert_grad(F.allpass_biquad, (x, sr, central_freq, Q))

    @parameterized.expand([
        (800, 0.7, ),
    ])
    def test_lowpass_biquad(self, cutoff_freq, Q):
        torch.random.manual_seed(2434)
        sr = 22050
        x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
        cutoff_freq = torch.tensor(cutoff_freq)
        Q = torch.tensor(Q)
        self.assert_grad(F.lowpass_biquad, (x, sr, cutoff_freq, Q))

    @parameterized.expand([
        (800, 0.7, ),
    ])
    def test_highpass_biquad(self, cutoff_freq, Q):
        torch.random.manual_seed(2434)
        sr = 22050
        x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
        cutoff_freq = torch.tensor(cutoff_freq)
        Q = torch.tensor(Q)
        self.assert_grad(F.highpass_biquad, (x, sr, cutoff_freq, Q))

    @parameterized.expand([
        (800, 0.7, True),
        (800, 0.7, False),
    ])
    def test_bandpass_biquad(self, central_freq, Q, const_skirt_gain):
        torch.random.manual_seed(2434)
        sr = 22050
        x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
        central_freq = torch.tensor(central_freq)
        Q = torch.tensor(Q)
        self.assert_grad(F.bandpass_biquad, (x, sr, central_freq, Q, const_skirt_gain))

    @parameterized.expand([
        (800, 0.7, 10),
        (800, 0.7, -10),
    ])
    def test_equalizer_biquad(self, central_freq, Q, gain):
        torch.random.manual_seed(2434)
        sr = 22050
        x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
        central_freq = torch.tensor(central_freq)
        Q = torch.tensor(Q)
        gain = torch.tensor(gain)
        self.assert_grad(F.equalizer_biquad, (x, sr, central_freq, gain, Q))

    @parameterized.expand([
        (800, 0.7, ),
    ])
    def test_bandreject_biquad(self, central_freq, Q):
        torch.random.manual_seed(2434)
        sr = 22050
        x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
        central_freq = torch.tensor(central_freq)
        Q = torch.tensor(Q)
        self.assert_grad(F.bandreject_biquad, (x, sr, central_freq, Q))


class AutogradFloat32(TestBaseMixin):
    def assert_grad(
            self,
            transform: Callable[..., Tensor],
            inputs: Tuple[torch.Tensor],
            enable_all_grad: bool = True,
    ):
        inputs_ = []
        for i in inputs:
            if torch.is_tensor(i):
                i = i.to(dtype=self.dtype, device=self.device)
                if enable_all_grad:
                    i.requires_grad = True
            inputs_.append(i)
        # gradcheck with float32 requires higher atol and epsilon
        assert gradcheck(transform, inputs, eps=1e-3, atol=1e-3, nondet_tol=0.)

    @parameterized.expand([
        (rnnt_utils.get_B1_T10_U3_D4_data, ),
        (rnnt_utils.get_B2_T4_U3_D3_data, ),
        (rnnt_utils.get_B1_T2_U3_D5_data, ),
    ])
    def test_rnnt_loss(self, data_func):
        def get_data(data_func, device):
            data = data_func()
            if type(data) == tuple:
                data = data[0]
            return data

        data = get_data(data_func, self.device)
        inputs = (
            data["logits"].to(torch.float32),  # logits
            data["targets"],                # targets
            data["logit_lengths"],          # logit_lengths
            data["target_lengths"],         # target_lengths
            data["blank"],                  # blank
            -1,                             # clamp
        )

        self.assert_grad(F.rnnt_loss, inputs, enable_all_grad=False)