librispeech_test.py 3.75 KB
Newer Older
flyingdown's avatar
flyingdown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
from pathlib import Path

from torchaudio_unittest.common_utils import (
    TempDirMixin,
    TorchaudioTestCase,
    get_whitenoise,
    save_wav,
    normalize_wav,
)

from torchaudio.datasets import librispeech

# Used to generate a unique transcript for each dummy audio file
_NUMBERS = [
    'ZERO',
    'ONE',
    'TWO',
    'THREE',
    'FOUR',
    'FIVE',
    'SIX',
    'SEVEN',
    'EIGHT',
    'NINE'
]


def get_mock_dataset(root_dir):
    """
    root_dir: directory to the mocked dataset
    """
    mocked_data = []
    dataset_dir = os.path.join(
        root_dir, librispeech.FOLDER_IN_ARCHIVE, librispeech.URL
    )
    os.makedirs(dataset_dir, exist_ok=True)
    sample_rate = 16000  # 16kHz
    seed = 0

    for speaker_id in range(5):
        speaker_path = os.path.join(dataset_dir, str(speaker_id))
        os.makedirs(speaker_path, exist_ok=True)

        for chapter_id in range(3):
            chapter_path = os.path.join(speaker_path, str(chapter_id))
            os.makedirs(chapter_path, exist_ok=True)
            trans_content = []

            for utterance_id in range(10):
                filename = f'{speaker_id}-{chapter_id}-{utterance_id:04d}.wav'
                path = os.path.join(chapter_path, filename)

                transcript = ' '.join(
                    [_NUMBERS[x] for x in [speaker_id, chapter_id, utterance_id]]
                )
                trans_content.append(
                    f'{speaker_id}-{chapter_id}-{utterance_id:04d} {transcript}'
                )

                data = get_whitenoise(
                    sample_rate=sample_rate,
                    duration=0.01,
                    n_channels=1,
                    dtype='float32',
                    seed=seed
                )
                save_wav(path, data, sample_rate)
                sample = (
                    normalize_wav(data),
                    sample_rate,
                    transcript,
                    speaker_id,
                    chapter_id,
                    utterance_id
                )
                mocked_data.append(sample)

                seed += 1

            trans_filename = f'{speaker_id}-{chapter_id}.trans.txt'
            trans_path = os.path.join(chapter_path, trans_filename)
            with open(trans_path, 'w') as f:
                f.write('\n'.join(trans_content))
    return mocked_data


class TestLibriSpeech(TempDirMixin, TorchaudioTestCase):
    backend = 'default'

    root_dir = None
    samples = []

    @classmethod
    def setUpClass(cls):
        cls.root_dir = cls.get_base_temp_dir()
        cls.samples = get_mock_dataset(cls.root_dir)

    @classmethod
    def tearDownClass(cls):
        # In case of test failure
        librispeech.LIBRISPEECH._ext_audio = '.flac'

    def _test_librispeech(self, dataset):
        num_samples = 0
        for i, (
                data, sample_rate, transcript, speaker_id, chapter_id, utterance_id
        ) in enumerate(dataset):
            self.assertEqual(data, self.samples[i][0], atol=5e-5, rtol=1e-8)
            assert sample_rate == self.samples[i][1]
            assert transcript == self.samples[i][2]
            assert speaker_id == self.samples[i][3]
            assert chapter_id == self.samples[i][4]
            assert utterance_id == self.samples[i][5]
            num_samples += 1

        assert num_samples == len(self.samples)
        librispeech.LIBRISPEECH._ext_audio = '.flac'

    def test_librispeech_str(self):
        librispeech.LIBRISPEECH._ext_audio = '.wav'
        dataset = librispeech.LIBRISPEECH(self.root_dir)
        self._test_librispeech(dataset)

    def test_librispeech_path(self):
        librispeech.LIBRISPEECH._ext_audio = '.wav'
        dataset = librispeech.LIBRISPEECH(Path(self.root_dir))
        self._test_librispeech(dataset)