"docs/index.md" did not exist on "b068e7018df6f205946f6cf4a25e2a1e8621dd12"
test_transforms.py 4.65 KB
Newer Older
1
from __future__ import print_function
David Pollack's avatar
David Pollack committed
2
3
4
5
6
7
import torch
import torchaudio
import torchaudio.transforms as transforms
import numpy as np
import unittest

Soumith Chintala's avatar
Soumith Chintala committed
8

David Pollack's avatar
David Pollack committed
9
10
11
12
class Tester(unittest.TestCase):

    sr = 16000
    freq = 440
13
    volume = .3
Soumith Chintala's avatar
Soumith Chintala committed
14
    sig = (torch.cos(2 * np.pi * torch.arange(0, 4 * sr) * freq / sr)).float()
15
    # sig = (torch.cos((1+torch.arange(0, 4 * sr) * 2) / sr * 2 * np.pi * torch.arange(0, 4 * sr) * freq / sr)).float()
David Pollack's avatar
David Pollack committed
16
    sig.unsqueeze_(1)
Soumith Chintala's avatar
Soumith Chintala committed
17
    sig = (sig * volume * 2**31).long()
David Pollack's avatar
David Pollack committed
18
19
20
21
22
23

    def test_scale(self):

        audio_orig = self.sig.clone()
        result = transforms.Scale()(audio_orig)
        self.assertTrue(result.min() >= -1. and result.max() <= 1.,
24
                        print("min: {}, max: {}".format(result.min(), result.max())))
David Pollack's avatar
David Pollack committed
25

Soumith Chintala's avatar
Soumith Chintala committed
26
27
        maxminmax = np.abs(
            [audio_orig.min(), audio_orig.max()]).max().astype(np.float)
David Pollack's avatar
David Pollack committed
28
29
30
        result = transforms.Scale(factor=maxminmax)(audio_orig)
        self.assertTrue((result.min() == -1. or result.max() == 1.) and
                        result.min() >= -1. and result.max() <= 1.,
31
                        print("min: {}, max: {}".format(result.min(), result.max())))
David Pollack's avatar
David Pollack committed
32
33
34
35
36
37
38
39
40
41

    def test_pad_trim(self):

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 1.2)

        result = transforms.PadTrim(max_len=length_new)(audio_orig)

        self.assertTrue(result.size(0) == length_new,
42
                        print("old size: {}, new size: {}".format(audio_orig.size(0), result.size(0))))
David Pollack's avatar
David Pollack committed
43
44
45
46
47
48
49
50

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 0.8)

        result = transforms.PadTrim(max_len=length_new)(audio_orig)

        self.assertTrue(result.size(0) == length_new,
51
                        print("old size: {}, new size: {}".format(audio_orig.size(0), result.size(0))))
David Pollack's avatar
David Pollack committed
52
53

    def test_downmix_mono(self):
David Pollack's avatar
David Pollack committed
54

David Pollack's avatar
David Pollack committed
55
56
57
58
59
60
61
62
63
64
65
66
67
        audio_L = self.sig.clone()
        audio_R = self.sig.clone()
        R_idx = int(audio_R.size(0) * 0.1)
        audio_R = torch.cat((audio_R[R_idx:], audio_R[:R_idx]))

        audio_Stereo = torch.cat((audio_L, audio_R), dim=1)

        self.assertTrue(audio_Stereo.size(1) == 2)

        result = transforms.DownmixMono()(audio_Stereo)

        self.assertTrue(result.size(1) == 1)

68
69
70
71
72
73
74
75
76
77
    def test_lc2cl(self):

        audio = self.sig.clone()
        result = transforms.LC2CL()(audio)
        self.assertTrue(result.size()[::-1] == audio.size())

    def test_mel(self):

        audio = self.sig.clone()
        audio = transforms.Scale()(audio)
78
        self.assertTrue(audio.dim() == 2)
79
        result = transforms.MEL()(audio)
80
        self.assertTrue(result.dim() == 3)
81
        result = transforms.BLC2CBL()(result)
82
        self.assertTrue(result.dim() == 3)
83

David Pollack's avatar
David Pollack committed
84
85
86
87
88
    def test_compose(self):

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 1.2)
Soumith Chintala's avatar
Soumith Chintala committed
89
90
        maxminmax = np.abs(
            [audio_orig.min(), audio_orig.max()]).max().astype(np.float)
David Pollack's avatar
David Pollack committed
91
92
93
94
95
96
97
98
99

        tset = (transforms.Scale(factor=maxminmax),
                transforms.PadTrim(max_len=length_new))
        result = transforms.Compose(tset)(audio_orig)

        self.assertTrue(np.abs([result.min(), result.max()]).max() == 1.)

        self.assertTrue(result.size(0) == length_new)

David Pollack's avatar
David Pollack committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    def test_mu_law_companding(self):

        sig = self.sig.clone()

        quantization_channels = 256
        sig = self.sig.numpy()
        sig = sig / np.abs(sig).max()
        self.assertTrue(sig.min() >= -1. and sig.max() <= 1.)

        sig_mu = transforms.MuLawEncoding(quantization_channels)(sig)
        self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels)

        sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu)
        self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.)

        sig = self.sig.clone()
        sig = sig / torch.abs(sig).max()
        self.assertTrue(sig.min() >= -1. and sig.max() <= 1.)

        sig_mu = transforms.MuLawEncoding(quantization_channels)(sig)
        self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels)

        sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu)
        self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.)
David Pollack's avatar
David Pollack committed
124

125
126
127
128
129
130
131
    def test_mel2(self):
        audio_orig = self.sig.clone()  # (16000, 1)
        audio_scaled = transforms.Scale()(audio_orig)  # (16000, 1)
        audio_scaled = transforms.LC2CL()(audio_scaled)  # (1, 16000)
        spectrogram_torch = transforms.MEL2()(audio_scaled)  # (1, 319, 40)
        self.assertTrue(spectrogram_torch.dim() == 3)
        self.assertTrue(spectrogram_torch.max() <= 0.)
Soumith Chintala's avatar
Soumith Chintala committed
132

David Pollack's avatar
David Pollack committed
133
134
if __name__ == '__main__':
    unittest.main()