wav2vec2_pipeline_test.py 3.63 KB
Newer Older
1
import pytest
2
import torchaudio
3
from torchaudio.pipelines import (
4
5
    HUBERT_ASR_LARGE,
    HUBERT_ASR_XLARGE,
6
    HUBERT_BASE,
7
8
    HUBERT_LARGE,
    HUBERT_XLARGE,
9
    VOXPOPULI_ASR_BASE_10K_DE,
10
    VOXPOPULI_ASR_BASE_10K_EN,
11
    VOXPOPULI_ASR_BASE_10K_ES,
12
    VOXPOPULI_ASR_BASE_10K_FR,
13
    VOXPOPULI_ASR_BASE_10K_IT,
14
15
16
17
18
19
20
21
22
23
24
25
26
    WAV2VEC2_ASR_BASE_100H,
    WAV2VEC2_ASR_BASE_10M,
    WAV2VEC2_ASR_BASE_960H,
    WAV2VEC2_ASR_LARGE_100H,
    WAV2VEC2_ASR_LARGE_10M,
    WAV2VEC2_ASR_LARGE_960H,
    WAV2VEC2_ASR_LARGE_LV60K_100H,
    WAV2VEC2_ASR_LARGE_LV60K_10M,
    WAV2VEC2_ASR_LARGE_LV60K_960H,
    WAV2VEC2_BASE,
    WAV2VEC2_LARGE,
    WAV2VEC2_LARGE_LV60K,
    WAV2VEC2_XLSR53,
Grigory Sizov's avatar
Grigory Sizov committed
27
28
29
    WAVLM_BASE,
    WAVLM_BASE_PLUS,
    WAVLM_LARGE,
30
31
32
33
34
35
)


@pytest.mark.parametrize(
    "bundle",
    [
36
37
38
39
        WAV2VEC2_BASE,
        WAV2VEC2_LARGE,
        WAV2VEC2_LARGE_LV60K,
        WAV2VEC2_XLSR53,
40
        HUBERT_BASE,
41
42
        HUBERT_LARGE,
        HUBERT_XLARGE,
Grigory Sizov's avatar
Grigory Sizov committed
43
44
45
        WAVLM_BASE,
        WAVLM_BASE_PLUS,
        WAVLM_LARGE,
46
    ],
47
48
49
50
51
52
53
)
def test_pretraining_models(bundle):
    """Smoke test of downloading weights for pretraining models"""
    bundle.get_model()


@pytest.mark.parametrize(
moto's avatar
moto committed
54
    "bundle,lang,expected",
55
    [
56
57
58
59
60
61
        (WAV2VEC2_ASR_BASE_10M, "en", "I|HAD|THAT|CURIYOSSITY|BESID|ME|AT|THIS|MOMENT|"),
        (WAV2VEC2_ASR_BASE_100H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"),
        (WAV2VEC2_ASR_BASE_960H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"),
        (WAV2VEC2_ASR_LARGE_10M, "en", "I|HAD|THAT|CURIOUSITY|BESIDE|ME|AT|THIS|MOMENT|"),
        (WAV2VEC2_ASR_LARGE_100H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"),
        (WAV2VEC2_ASR_LARGE_960H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"),
62
        (WAV2VEC2_ASR_LARGE_LV60K_10M, "en", "I|HAD|THAT|CURIOUSITY|BESID|ME|AT|THISS|MOMENT|"),
63
64
65
66
67
68
69
        (WAV2VEC2_ASR_LARGE_LV60K_100H, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"),
        (WAV2VEC2_ASR_LARGE_LV60K_960H, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"),
        (HUBERT_ASR_LARGE, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"),
        (HUBERT_ASR_XLARGE, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"),
        (
            VOXPOPULI_ASR_BASE_10K_EN,
            "en2",
70
71
            "i|hope|that|we|will|see|a|ddrasstic|decrease|of|funding|for|the|failed|eu|project|and|that|more|money|will|come|back|to|the|taxpayers",  # noqa: E501
        ),
72
73
74
        (
            VOXPOPULI_ASR_BASE_10K_ES,
            "es",
75
76
            "la|primera|que|es|imprescindible|pensar|a|pequeña|a|escala|para|implicar|y|complementar|así|la|actuación|global",  # noqa: E501
        ),
77
78
79
80
        (VOXPOPULI_ASR_BASE_10K_DE, "de", "dabei|spielt|auch|eine|sorgfältige|berichterstattung|eine|wichtige|rolle"),
        (
            VOXPOPULI_ASR_BASE_10K_FR,
            "fr",
81
82
            "la|commission|va|faire|des|propositions|sur|ce|sujet|comment|mettre|en|place|cette|capacité|fiscale|et|le|conseil|européen|y|reviendra|sour|les|sujets|au|moins|de|mars",  # noqa: E501
        ),
83
84
85
86
        (
            VOXPOPULI_ASR_BASE_10K_IT,
            "it",
            "credo|che|illatino|non|sia|contemplato|tra|le|traduzioni|e|quindi|mi|attengo|allitaliano",
87
        ),
88
    ],
89
90
)
def test_finetune_asr_model(
91
92
93
94
95
    bundle,
    lang,
    expected,
    sample_speech,
    ctc_decoder,
96
97
98
):
    """Smoke test of downloading weights for fine-tuning models and simple transcription"""
    model = bundle.get_model().eval()
moto's avatar
moto committed
99
    waveform, sample_rate = torchaudio.load(sample_speech)
100
    emission, _ = model(waveform)
101
    decoder = ctc_decoder(bundle.get_labels())
102
103
    result = decoder(emission[0])
    assert result == expected