online_asr_tutorial.py 7.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
"""
Online ASR with Emformer RNN-T
==============================

**Author**: `Jeff Hwang <jeffhwang@fb.com>`__, `Moto Hira <moto@fb.com>`__

This tutorial shows how to use Emformer RNN-T and streaming API
to perform online speech recognition.

"""

######################################################################
#
14
# .. note::
15
#
16
17
#    This tutorial requires torchaudio with prototype features and
#    FFmpeg libraries (>=4.1).
18
#
19
20
21
#    torchaudio prototype features are available on nightly builds.
#    Please refer to https://pytorch.org/get-started/locally/
#    for instructions.
22
#
23
24
25
26
#    The interfaces of prototype features are unstable and subject to
#    change. Please refer to `the nightly build documentation
#    <https://pytorch.org/audio/main/>`__ for the up-to-date
#    API references.
27
#
28
#    There are multiple ways to install FFmpeg libraries.
29
30
31
32
33
34
35
36
37
38
39
40
#    If you are using Anaconda Python distribution,
#    ``conda install -c anaconda ffmpeg`` will install
#    the required libraries.
#
#    When running this tutorial in Google Colab, the following
#    command should do.
#
#    .. code::
#
#       !add-apt-repository -y ppa:savoury1/ffmpeg4
#       !apt-get -qq install -y ffmpeg

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
######################################################################
# 1. Overview
# -----------
#
# Performing online speech recognition is composed of the following steps
#
# 1. Build the inference pipeline
#    Emformer RNN-T is composed of three components: feature extractor,
#    decoder and token processor.
# 2. Format the waveform into chunks of expected sizes.
# 3. Pass data through the pipeline.

######################################################################
# 2. Preparation
# --------------
#

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import IPython
import torch
import torchaudio

print(torch.__version__)
print(torchaudio.__version__)

from torchaudio.prototype.io import Streamer

######################################################################
# 3. Construct the pipeline
# -------------------------
#
# Pre-trained model weights and related pipeline components are
# bundled as :py:func:`torchaudio.pipelines.RNNTBundle`.
#
# We use :py:func:`torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH`,
# which is a Emformer RNN-T model trained on LibriSpeech dataset.
#

bundle = torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH

feature_extractor = bundle.get_streaming_feature_extractor()
decoder = bundle.get_decoder()
token_processor = bundle.get_token_processor()

######################################################################
# Streaming inference works on input data with overlap.
moto's avatar
moto committed
86
87
88
89
90
# Emformer RNN-T model treats the newest portion of the input data
# as the "right context" — a preview of future context.
# In each inference call, the model expects the main segment
# to start from this right context from the previous inference call.
# The following figure illustrates this.
91
92
93
94
95
96
97
98
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/emformer_rnnt_context.png
#
# The size of main segment and right context, along with
# the expected sample rate can be retrieved from bundle.
#

sample_rate = bundle.sample_rate
99
100
segment_length = bundle.segment_length * bundle.hop_length
context_length = bundle.right_context_length * bundle.hop_length
101
102

print(f"Sample rate: {sample_rate}")
103
104
print(f"Main segment: {segment_length} frames ({segment_length / sample_rate} seconds)")
print(f"Right context: {context_length} frames ({context_length / sample_rate} seconds)")
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

######################################################################
# 4. Configure the audio stream
# -----------------------------
#
# Next, we configure the input audio stream using :py:func:`~torchaudio.prototype.io.Streamer`.
#
# For the detail of this API, please refer to the
# `Media Stream API tutorial <./streaming_api_tutorial.html>`__.
#

######################################################################
# The following audio file was originally published by LibriVox project,
# and it is in the public domain.
#
# https://librivox.org/great-pirate-stories-by-joseph-lewis-french/
#
# It was re-uploaded for the sake of the tutorial.
#
src = "https://download.pytorch.org/torchaudio/tutorial-assets/greatpiratestories_00_various.mp3"

streamer = Streamer(src)
127
streamer.add_basic_audio_stream(frames_per_chunk=segment_length, sample_rate=bundle.sample_rate)
128
129
130
131
132

print(streamer.get_src_stream_info(0))
print(streamer.get_out_stream_info(0))

######################################################################
moto's avatar
moto committed
133
134
135
136
137
138
139
140
141
# As previously explained, Emformer RNN-T model expects input data with
# overlaps; however, `Streamer` iterates the source media without overlap,
# so we make a helper structure that caches a part of input data from
# `Streamer` as right context and then appends it to the next input data from
# `Streamer`.
#
# The following figure illustrates this.
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/emformer_rnnt_streamer_context.png
142
143
144
145
#


class ContextCacher:
moto's avatar
moto committed
146
    """Cache the end of input data and prepend the next input data with it.
147
148

    Args:
149
150
151
        segment_length (int): The size of main segment.
            If the incoming segment is shorter, then the segment is padded.
        context_length (int): The size of the context, cached and appended.
152
153
    """

154
155
156
157
    def __init__(self, segment_length: int, context_length: int):
        self.segment_length = segment_length
        self.context_length = context_length
        self.context = torch.zeros([context_length])
158
159

    def __call__(self, chunk: torch.Tensor):
160
161
162
163
        if chunk.size(0) < self.segment_length:
            chunk = torch.nn.functional.pad(chunk, (0, self.segment_length - chunk.size(0)))
        chunk_with_context = torch.cat((self.context, chunk))
        self.context = chunk[-self.context_length :]
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        return chunk_with_context


######################################################################
# 5. Run stream inference
# -----------------------
#
# Finally, we run the recognition.
#
# First, we initialize the stream iterator, context cacher, and
# state and hypothesis that are used by decoder to carry over the
# decoding state between inference calls.
#

178
cacher = ContextCacher(segment_length, context_length)
179
180
181
182
183
184
185
186
187
188
189

state, hypothesis = None, None

######################################################################
# Next we, run the inference.
#
# For the sake of better display, we create a helper function which
# processes the source stream up to the given times and call it
# repeatedly.
#

moto's avatar
moto committed
190
191
stream_iterator = streamer.stream()

192
193
194
195
196

@torch.inference_mode()
def run_inference(num_iter=200):
    global state, hypothesis
    chunks = []
moto's avatar
moto committed
197
    for i, (chunk,) in enumerate(stream_iterator, start=1):
198
        segment = cacher(chunk[:, 0])
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        features, length = feature_extractor(segment)
        hypos, state = decoder.infer(features, length, 10, state=state, hypothesis=hypothesis)
        hypothesis = hypos[0]
        transcript = token_processor(hypothesis.tokens, lstrip=False)
        print(transcript, end="", flush=True)

        chunks.append(chunk)
        if i == num_iter:
            break

    return IPython.display.Audio(torch.cat(chunks).T.numpy(), rate=bundle.sample_rate)


######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()