audio_io_tutorial.py 13 KB
Newer Older
1
2
3
4
5
# -*- coding: utf-8 -*-
"""
Audio I/O
=========

6
7
**Author**: `Moto Hira <moto@meta.com>`__

8
9
10
11
12
13
14
15
16
This tutorial shows how to use TorchAudio's basic I/O API to inspect audio data,
load them into PyTorch Tensors and save PyTorch Tensors.

.. warning::

   There are multiple changes planned/made to audio I/O in recent releases.
   For the detail of these changes please refer to
   :ref:`Introduction of Dispatcher <dispatcher_migration>`.

17
18
19
20
21
22
23
24
25
"""

import torch
import torchaudio

print(torch.__version__)
print(torchaudio.__version__)

######################################################################
moto's avatar
moto committed
26
27
# Preparation
# -----------
28
#
moto's avatar
moto committed
29
30
31
32
33
34
35
36
37
# First, we import the modules and download the audio assets we use in this tutorial.
#
# .. note::
#    When running this tutorial in Google Colab, install the required packages
#    with the following:
#
#    .. code::
#
#       !pip install boto3
38
39
40
41

import io
import os
import tarfile
moto's avatar
moto committed
42
import tempfile
43
44

import boto3
45
46
import matplotlib.pyplot as plt
import requests
47
48
from botocore import UNSIGNED
from botocore.config import Config
moto's avatar
moto committed
49
50
from IPython.display import Audio
from torchaudio.utils import download_asset
51

moto's avatar
moto committed
52
53
54
SAMPLE_GSM = download_asset("tutorial-assets/steam-train-whistle-daniel_simon.gsm")
SAMPLE_WAV = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")
SAMPLE_WAV_8000 = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042-8000hz.wav")
55

56

57
58
59
60
61
62
63
def _hide_seek(obj):
    class _wrapper:
        def __init__(self, obj):
            self.obj = obj

        def read(self, n):
            return self.obj.read(n)
moto's avatar
moto committed
64

65
66
    return _wrapper(obj)

67
68

######################################################################
69
70
# Querying audio metadata
# -----------------------
71
#
72
73
# Function :py:func:`torchaudio.info` fetches audio metadata.
# You can provide a path-like object or file-like object.
74
75
#

moto's avatar
moto committed
76
metadata = torchaudio.info(SAMPLE_WAV)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
print(metadata)

######################################################################
# Where
#
# -  ``sample_rate`` is the sampling rate of the audio
# -  ``num_channels`` is the number of channels
# -  ``num_frames`` is the number of frames per channel
# -  ``bits_per_sample`` is bit depth
# -  ``encoding`` is the sample coding format
#
# ``encoding`` can take on one of the following values:
#
# -  ``"PCM_S"``: Signed integer linear PCM
# -  ``"PCM_U"``: Unsigned integer linear PCM
# -  ``"PCM_F"``: Floating point linear PCM
# -  ``"FLAC"``: Flac, `Free Lossless Audio
#    Codec <https://xiph.org/flac/>`__
# -  ``"ULAW"``: Mu-law,
#    [`wikipedia <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`__]
# -  ``"ALAW"``: A-law
#    [`wikipedia <https://en.wikipedia.org/wiki/A-law_algorithm>`__]
# -  ``"MP3"`` : MP3, MPEG-1 Audio Layer III
# -  ``"VORBIS"``: OGG Vorbis [`xiph.org <https://xiph.org/vorbis/>`__]
# -  ``"AMR_NB"``: Adaptive Multi-Rate
#    [`wikipedia <https://en.wikipedia.org/wiki/Adaptive_Multi-Rate_audio_codec>`__]
# -  ``"AMR_WB"``: Adaptive Multi-Rate Wideband
#    [`wikipedia <https://en.wikipedia.org/wiki/Adaptive_Multi-Rate_Wideband>`__]
# -  ``"OPUS"``: Opus [`opus-codec.org <https://opus-codec.org/>`__]
# -  ``"GSM"``: GSM-FR
#    [`wikipedia <https://en.wikipedia.org/wiki/Full_Rate>`__]
moto's avatar
moto committed
108
# -  ``"HTK"``: Single channel 16-bit PCM
109
110
111
112
113
114
115
116
117
118
# -  ``"UNKNOWN"`` None of above
#

######################################################################
# **Note**
#
# -  ``bits_per_sample`` can be ``0`` for formats with compression and/or
#    variable bit rate (such as MP3).
# -  ``num_frames`` can be ``0`` for GSM-FR format.
#
moto's avatar
moto committed
119
120
121
122

metadata = torchaudio.info(SAMPLE_GSM)
print(metadata)

123
124
125

######################################################################
# Querying file-like object
moto's avatar
moto committed
126
# -------------------------
127
#
128
# :py:func:`torchaudio.info` works on file-like objects.
129
130
#

moto's avatar
moto committed
131
132
url = "https://download.pytorch.org/torchaudio/tutorial-assets/steam-train-whistle-daniel_simon.wav"
with requests.get(url, stream=True) as response:
133
    metadata = torchaudio.info(_hide_seek(response.raw))
134
135
136
print(metadata)

######################################################################
moto's avatar
moto committed
137
# .. note::
138
#
moto's avatar
moto committed
139
140
141
142
143
144
#    When passing a file-like object, ``info`` does not read
#    all of the underlying data; rather, it reads only a portion
#    of the data from the beginning.
#    Therefore, for a given audio format, it may not be able to retrieve the
#    correct metadata, including the format itself. In such case, you
#    can pass ``format`` argument to specify the format of the audio.
145
146

######################################################################
moto's avatar
moto committed
147
148
# Loading audio data
# ------------------
149
#
150
# To load audio data, you can use :py:func:`torchaudio.load`.
151
152
153
154
155
156
157
#
# This function accepts a path-like object or file-like object as input.
#
# The returned value is a tuple of waveform (``Tensor``) and sample rate
# (``int``).
#
# By default, the resulting tensor object has ``dtype=torch.float32`` and
moto's avatar
moto committed
158
# its value range is ``[-1.0, 1.0]``.
159
160
161
162
163
#
# For the list of supported format, please refer to `the torchaudio
# documentation <https://pytorch.org/audio>`__.
#

moto's avatar
moto committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
waveform, sample_rate = torchaudio.load(SAMPLE_WAV)


######################################################################
#
def plot_waveform(waveform, sample_rate):
    waveform = waveform.numpy()

    num_channels, num_frames = waveform.shape
    time_axis = torch.arange(0, num_frames) / sample_rate

    figure, axes = plt.subplots(num_channels, 1)
    if num_channels == 1:
        axes = [axes]
    for c in range(num_channels):
        axes[c].plot(time_axis, waveform[c], linewidth=1)
        axes[c].grid(True)
        if num_channels > 1:
            axes[c].set_ylabel(f"Channel {c+1}")
    figure.suptitle("waveform")

185

moto's avatar
moto committed
186
187
######################################################################
#
188
plot_waveform(waveform, sample_rate)
moto's avatar
moto committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209


######################################################################
#
def plot_specgram(waveform, sample_rate, title="Spectrogram"):
    waveform = waveform.numpy()

    num_channels, num_frames = waveform.shape

    figure, axes = plt.subplots(num_channels, 1)
    if num_channels == 1:
        axes = [axes]
    for c in range(num_channels):
        axes[c].specgram(waveform[c], Fs=sample_rate)
        if num_channels > 1:
            axes[c].set_ylabel(f"Channel {c+1}")
    figure.suptitle(title)


######################################################################
#
210
211
212
plot_specgram(waveform, sample_rate)


moto's avatar
moto committed
213
214
215
216
######################################################################
#
Audio(waveform.numpy()[0], rate=sample_rate)

217
218
######################################################################
# Loading from file-like object
moto's avatar
moto committed
219
# -----------------------------
220
#
moto's avatar
moto committed
221
222
# The I/O functions support file-like objects.
# This allows for fetching and decoding audio data from locations
223
224
225
226
# within and beyond the local file system.
# The following examples illustrate this.
#

moto's avatar
moto committed
227
228
229
######################################################################
#

230
# Load audio data as HTTP request
moto's avatar
moto committed
231
232
url = "https://download.pytorch.org/torchaudio/tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
with requests.get(url, stream=True) as response:
233
    waveform, sample_rate = torchaudio.load(_hide_seek(response.raw))
234
235
plot_specgram(waveform, sample_rate, title="HTTP datasource")

moto's avatar
moto committed
236
237
238
######################################################################
#

239
# Load audio from tar file
moto's avatar
moto committed
240
241
242
243
tar_path = download_asset("tutorial-assets/VOiCES_devkit.tar.gz")
tar_item = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
with tarfile.open(tar_path, mode="r") as tarfile_:
    fileobj = tarfile_.extractfile(tar_item)
244
    waveform, sample_rate = torchaudio.load(fileobj)
245
246
plot_specgram(waveform, sample_rate, title="TAR file")

moto's avatar
moto committed
247
248
249
######################################################################
#

250
# Load audio from S3
moto's avatar
moto committed
251
252
bucket = "pytorch-tutorial-assets"
key = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
253
client = boto3.client("s3", config=Config(signature_version=UNSIGNED))
moto's avatar
moto committed
254
response = client.get_object(Bucket=bucket, Key=key)
255
waveform, sample_rate = torchaudio.load(_hide_seek(response["Body"]))
256
257
258
259
260
plot_specgram(waveform, sample_rate, title="From S3")


######################################################################
# Tips on slicing
moto's avatar
moto committed
261
# ---------------
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#
# Providing ``num_frames`` and ``frame_offset`` arguments restricts
# decoding to the corresponding segment of the input.
#
# The same result can be achieved using vanilla Tensor slicing,
# (i.e. ``waveform[:, frame_offset:frame_offset+num_frames]``). However,
# providing ``num_frames`` and ``frame_offset`` arguments is more
# efficient.
#
# This is because the function will end data acquisition and decoding
# once it finishes decoding the requested frames. This is advantageous
# when the audio data are transferred via network as the data transfer will
# stop as soon as the necessary amount of data is fetched.
#
# The following example illustrates this.
#

# Illustration of two different decoding methods.
# The first one will fetch all the data and decode them, while
# the second one will stop fetching data once it completes decoding.
# The resulting waveforms are identical.

frame_offset, num_frames = 16000, 16000  # Fetch and decode the 1 - 2 seconds

moto's avatar
moto committed
286
url = "https://download.pytorch.org/torchaudio/tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
287
print("Fetching all the data...")
moto's avatar
moto committed
288
with requests.get(url, stream=True) as response:
289
    waveform1, sample_rate1 = torchaudio.load(_hide_seek(response.raw))
290
    waveform1 = waveform1[:, frame_offset : frame_offset + num_frames]
291
    print(f" - Fetched {response.raw.tell()} bytes")
292
293

print("Fetching until the requested frames are available...")
moto's avatar
moto committed
294
with requests.get(url, stream=True) as response:
295
    waveform2, sample_rate2 = torchaudio.load(
moto's avatar
moto committed
296
297
        _hide_seek(response.raw), frame_offset=frame_offset, num_frames=num_frames
    )
298
    print(f" - Fetched {response.raw.tell()} bytes")
299
300
301
302
303
304
305
306
307
308

print("Checking the resulting waveform ... ", end="")
assert (waveform1 == waveform2).all()
print("matched!")

######################################################################
# Saving audio to file
# --------------------
#
# To save audio data in formats interpretable by common applications,
309
# you can use :py:func:`torchaudio.save`.
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#
# This function accepts a path-like object or file-like object.
#
# When passing a file-like object, you also need to provide argument ``format``
# so that the function knows which format it should use. In the
# case of a path-like object, the function will infer the format from
# the extension. If you are saving to a file without an extension, you need
# to provide argument ``format``.
#
# When saving WAV-formatted data, the default encoding for ``float32`` Tensor
# is 32-bit floating-point PCM. You can provide arguments ``encoding`` and
# ``bits_per_sample`` to change this behavior. For example, to save data
# in 16-bit signed integer PCM, you can do the following.
#
moto's avatar
moto committed
324
325
# .. note::
#
moto's avatar
moto committed
326
327
#    Saving data in encodings with a lower bit depth reduces the
#    resulting file size but also precision.
328
329
#

moto's avatar
moto committed
330
331
waveform, sample_rate = torchaudio.load(SAMPLE_WAV)

332

moto's avatar
moto committed
333
334
######################################################################
#
335

moto's avatar
moto committed
336

moto's avatar
moto committed
337
338
339
340
341
342
343
344
def inspect_file(path):
    print("-" * 10)
    print("Source:", path)
    print("-" * 10)
    print(f" - File size: {os.path.getsize(path)} bytes")
    print(f" - {torchaudio.info(path)}")
    print()

moto's avatar
moto committed
345

moto's avatar
moto committed
346
347
######################################################################
#
348
349
350
# Save without any encoding option.
# The function will pick up the encoding which
# the provided data fit
moto's avatar
moto committed
351
352
353
354
with tempfile.TemporaryDirectory() as tempdir:
    path = f"{tempdir}/save_example_default.wav"
    torchaudio.save(path, waveform, sample_rate)
    inspect_file(path)
355

moto's avatar
moto committed
356
357
######################################################################
#
358
359
# Save as 16-bit signed integer Linear PCM
# The resulting file occupies half the storage but loses precision
moto's avatar
moto committed
360
361
362
363
with tempfile.TemporaryDirectory() as tempdir:
    path = f"{tempdir}/save_example_PCM_S16.wav"
    torchaudio.save(path, waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
    inspect_file(path)
364
365
366


######################################################################
moto's avatar
moto committed
367
# :py:func:`torchaudio.save` can also handle other formats.
368
# To name a few:
369
370
371
#

formats = [
372
    "flac",
373
374
375
376
377
    # "vorbis",
    # "sph",
    # "amb",
    # "amr-nb",
    # "gsm",
378
379
]

moto's avatar
moto committed
380
381
382
383
384
385
386
387
######################################################################
#
waveform, sample_rate = torchaudio.load(SAMPLE_WAV_8000)
with tempfile.TemporaryDirectory() as tempdir:
    for format in formats:
        path = f"{tempdir}/save_example.{format}"
        torchaudio.save(path, waveform, sample_rate, format=format)
        inspect_file(path)
388
389
390

######################################################################
# Saving to file-like object
moto's avatar
moto committed
391
# --------------------------
392
393
394
395
396
397
398
#
# Similar to the other I/O functions, you can save audio to file-like
# objects. When saving to a file-like object, argument ``format`` is
# required.
#


moto's avatar
moto committed
399
waveform, sample_rate = torchaudio.load(SAMPLE_WAV)
400
401
402
403
404
405
406

# Saving to bytes buffer
buffer_ = io.BytesIO()
torchaudio.save(buffer_, waveform, sample_rate, format="wav")

buffer_.seek(0)
print(buffer_.read(16))