"host/online_compile/include/config.h.in" did not exist on "1264925422920f24b3bb4fa34f178e31a23c97b5"
transducer_test.py 7.04 KB
Newer Older
1
import unittest
2
3
4
import torch
from torchaudio.prototype.transducer import RNNTLoss

5
from torchaudio_unittest.common_utils import TorchaudioTestCase
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244


def get_data_basic(device):
    # Example provided
    # in 6f73a2513dc784c59eec153a45f40bc528355b18
    # of https://github.com/HawkAaron/warp-transducer

    acts = torch.tensor(
        [
            [
                [
                    [0.1, 0.6, 0.1, 0.1, 0.1],
                    [0.1, 0.1, 0.6, 0.1, 0.1],
                    [0.1, 0.1, 0.2, 0.8, 0.1],
                ],
                [
                    [0.1, 0.6, 0.1, 0.1, 0.1],
                    [0.1, 0.1, 0.2, 0.1, 0.1],
                    [0.7, 0.1, 0.2, 0.1, 0.1],
                ],
            ]
        ],
        dtype=torch.float,
    )
    labels = torch.tensor([[1, 2]], dtype=torch.int)
    act_length = torch.tensor([2], dtype=torch.int)
    label_length = torch.tensor([2], dtype=torch.int)

    acts = acts.to(device)
    labels = labels.to(device)
    act_length = act_length.to(device)
    label_length = label_length.to(device)

    acts.requires_grad_(True)

    return acts, labels, act_length, label_length


def get_data_B2_T4_U3_D3(dtype=torch.float32, device="cpu"):
    # Test from D21322854

    logits = torch.tensor(
        [
            0.065357,
            0.787530,
            0.081592,
            0.529716,
            0.750675,
            0.754135,
            0.609764,
            0.868140,
            0.622532,
            0.668522,
            0.858039,
            0.164539,
            0.989780,
            0.944298,
            0.603168,
            0.946783,
            0.666203,
            0.286882,
            0.094184,
            0.366674,
            0.736168,
            0.166680,
            0.714154,
            0.399400,
            0.535982,
            0.291821,
            0.612642,
            0.324241,
            0.800764,
            0.524106,
            0.779195,
            0.183314,
            0.113745,
            0.240222,
            0.339470,
            0.134160,
            0.505562,
            0.051597,
            0.640290,
            0.430733,
            0.829473,
            0.177467,
            0.320700,
            0.042883,
            0.302803,
            0.675178,
            0.569537,
            0.558474,
            0.083132,
            0.060165,
            0.107958,
            0.748615,
            0.943918,
            0.486356,
            0.418199,
            0.652408,
            0.024243,
            0.134582,
            0.366342,
            0.295830,
            0.923670,
            0.689929,
            0.741898,
            0.250005,
            0.603430,
            0.987289,
            0.592606,
            0.884672,
            0.543450,
            0.660770,
            0.377128,
            0.358021,
        ],
        dtype=dtype,
    ).reshape(2, 4, 3, 3)

    targets = torch.tensor([[1, 2], [1, 1]], dtype=torch.int32)
    src_lengths = torch.tensor([4, 4], dtype=torch.int32)
    tgt_lengths = torch.tensor([2, 2], dtype=torch.int32)

    blank = 0

    ref_costs = torch.tensor([4.2806528590890736, 3.9384369822503591], dtype=dtype)

    ref_gradients = torch.tensor(
        [
            -0.186844,
            -0.062555,
            0.249399,
            -0.203377,
            0.202399,
            0.000977,
            -0.141016,
            0.079123,
            0.061893,
            -0.011552,
            -0.081280,
            0.092832,
            -0.154257,
            0.229433,
            -0.075176,
            -0.246593,
            0.146405,
            0.100188,
            -0.012918,
            -0.061593,
            0.074512,
            -0.055986,
            0.219831,
            -0.163845,
            -0.497627,
            0.209240,
            0.288387,
            0.013605,
            -0.030220,
            0.016615,
            0.113925,
            0.062781,
            -0.176706,
            -0.667078,
            0.367659,
            0.299419,
            -0.356344,
            -0.055347,
            0.411691,
            -0.096922,
            0.029459,
            0.067463,
            -0.063518,
            0.027654,
            0.035863,
            -0.154499,
            -0.073942,
            0.228441,
            -0.166790,
            -0.000088,
            0.166878,
            -0.172370,
            0.105565,
            0.066804,
            0.023875,
            -0.118256,
            0.094381,
            -0.104707,
            -0.108934,
            0.213642,
            -0.369844,
            0.180118,
            0.189726,
            0.025714,
            -0.079462,
            0.053748,
            0.122328,
            -0.238789,
            0.116460,
            -0.598687,
            0.302203,
            0.296484,
        ],
        dtype=dtype,
    ).reshape(2, 4, 3, 3)

    logits.requires_grad_(True)
    logits = logits.to(device)

    def grad_hook(grad):
        logits.saved_grad = grad.clone()

    logits.register_hook(grad_hook)

    data = {
        "logits": logits,
        "targets": targets,
        "src_lengths": src_lengths,
        "tgt_lengths": tgt_lengths,
        "blank": blank,
    }

    return data, ref_costs, ref_gradients


def compute_with_pytorch_transducer(data):
    costs = RNNTLoss(blank=data["blank"], reduction="none")(
        acts=data["logits"],
        labels=data["targets"],
        act_lens=data["src_lengths"],
        label_lens=data["tgt_lengths"],
    )

    loss = torch.sum(costs)
    loss.backward()
    costs = costs.cpu()
    gradients = data["logits"].saved_grad.cpu()
    return costs, gradients


245
246
247
248
249
250
251
252
def skipIfNoTransducer(test_item):
    try:
        torch.ops.torchaudio.rnnt_loss
        return test_item
    except RuntimeError:
        return unittest.skip("torchaudio C++ extension is not compiled with RNN transducer loss")(test_item)


253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
class TransducerTester:
    def test_basic_fp16_error(self):
        rnnt_loss = RNNTLoss()
        acts, labels, act_length, label_length = get_data_basic(self.device)
        acts = acts.to(torch.float16)
        # RuntimeError raised by log_softmax before reaching transducer's bindings
        self.assertRaises(
            RuntimeError, rnnt_loss, acts, labels, act_length, label_length
        )

    def test_basic_backward(self):
        rnnt_loss = RNNTLoss()
        acts, labels, act_length, label_length = get_data_basic(self.device)
        loss = rnnt_loss(acts, labels, act_length, label_length)
        loss.backward()

    def test_costs_and_gradients_B2_T4_U3_D3_fp32(self):

        data, ref_costs, ref_gradients = get_data_B2_T4_U3_D3(
            dtype=torch.float32, device=self.device
        )
        logits_shape = data["logits"].shape
        costs, gradients = compute_with_pytorch_transducer(data=data)

        atol, rtol = 1e-6, 1e-2
        self.assertEqual(costs, ref_costs, atol=atol, rtol=rtol)
        self.assertEqual(logits_shape, gradients.shape)
        self.assertEqual(gradients, ref_gradients, atol=atol, rtol=rtol)


283
284
@skipIfNoTransducer
class CPUTransducerTester(TransducerTester, TorchaudioTestCase):
285
    device = "cpu"