metrics.py 7.88 KB
Newer Older
1
import math
2
from typing import Optional
3
4
5
6
7
from itertools import permutations

import torch


8
9
10
11
12
13
def sdr(
        estimate: torch.Tensor,
        reference: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        epsilon: float = 1e-8
) -> torch.Tensor:
14
15
16
17
18
19
20
21
22
23
    """Computes source-to-distortion ratio.

    1. scale the reference signal with power(s_est * s_ref) / powr(s_ref * s_ref)
    2. compute SNR between adjusted estimate and reference.

    Args:
        estimate (torch.Tensor): Estimtaed signal.
            Shape: [batch, speakers (can be 1), time frame]
        reference (torch.Tensor): Reference signal.
            Shape: [batch, speakers, time frame]
24
        mask (torch.Tensor or None, optional): Binary mask to indicate padded value (0) or valid value (1).
25
            Shape: [batch, 1, time frame]
26
        epsilon (float, optional): constant value used to stabilize division.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

    Returns:
        torch.Tensor: scale-invariant source-to-distortion ratio.
        Shape: [batch, speaker]

    References:
        - Single-channel multi-speaker separation using deep clustering
          Y. Isik, J. Le Roux, Z. Chen, S. Watanabe, and J. R. Hershey,
        - Conv-TasNet: Surpassing Ideal Time--Frequency Magnitude Masking for Speech Separation
          Luo, Yi and Mesgarani, Nima
          https://arxiv.org/abs/1809.07454

    Notes:
        This function is tested to produce the exact same result as
        https://github.com/naplab/Conv-TasNet/blob/e66d82a8f956a69749ec8a4ae382217faa097c5c/utility/sdr.py#L34-L56
    """
    reference_pow = reference.pow(2).mean(axis=2, keepdim=True)
    mix_pow = (estimate * reference).mean(axis=2, keepdim=True)
    scale = mix_pow / (reference_pow + epsilon)

    reference = scale * reference
    error = estimate - reference

50
51
52
53
54
55
56
57
58
59
    reference_pow = reference.pow(2)
    error_pow = error.pow(2)

    if mask is None:
        reference_pow = reference_pow.mean(axis=2)
        error_pow = error_pow.mean(axis=2)
    else:
        denom = mask.sum(axis=2)
        reference_pow = (mask * reference_pow).sum(axis=2) / denom
        error_pow = (mask * error_pow).sum(axis=2) / denom
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

    return 10 * torch.log10(reference_pow) - 10 * torch.log10(error_pow)


class PIT(torch.nn.Module):
    """Applies utterance-level speaker permutation

    Computes the maxium possible value of the given utility function
    over the permutations of the speakers.

    Args:
        utility_func (function):
            Function that computes the utility (opposite of loss) with signature of
            (extimate: torch.Tensor, reference: torch.Tensor) -> torch.Tensor
            where input Tensors are shape of [batch, speakers, frame] and
            the output Tensor is shape of [batch, speakers].

    References:
        - Multi-talker Speech Separation with Utterance-level Permutation Invariant Training of
          Deep Recurrent Neural Networks
          Morten Kolbæk, Dong Yu, Zheng-Hua Tan and Jesper Jensen
          https://arxiv.org/abs/1703.06284
    """

    def __init__(self, utility_func):
        super().__init__()
        self.utility_func = utility_func

88
89
90
91
92
93
94
    def forward(
            self,
            estimate: torch.Tensor,
            reference: torch.Tensor,
            mask: Optional[torch.Tensor] = None,
            epsilon: float = 1e-8
    ) -> torch.Tensor:
95
96
97
98
99
100
101
        """Compute utterance-level PIT Loss

        Args:
            estimate (torch.Tensor): Estimated source signals.
                Shape: [bacth, speakers, time frame]
            reference (torch.Tensor): Reference (original) source signals.
                Shape: [batch, speakers, time frame]
102
            mask (torch.Tensor or None, optional): Binary mask to indicate padded value (0) or valid value (1).
103
                Shape: [batch, 1, time frame]
104
            epsilon (float, optional): constant value used to stabilize division.
105
106
107
108
109
110
111
112
113
114
115
116
117
118

        Returns:
            torch.Tensor: Maximum criterion over the speaker permutation.
                Shape: [batch, ]
        """
        assert estimate.shape == reference.shape

        batch_size, num_speakers = reference.shape[:2]
        num_permute = math.factorial(num_speakers)

        util_mat = torch.zeros(
            batch_size, num_permute, dtype=estimate.dtype, device=estimate.device
        )
        for i, idx in enumerate(permutations(range(num_speakers))):
119
            util = self.utility_func(estimate, reference[:, idx, :], mask=mask, epsilon=epsilon)
120
121
122
123
124
125
126
            util_mat[:, i] = util.mean(dim=1)  # take the average over speaker dimension
        return util_mat.max(dim=1).values


_sdr_pit = PIT(utility_func=sdr)


127
128
129
130
131
def sdr_pit(
        estimate: torch.Tensor,
        reference: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        epsilon: float = 1e-8):
132
133
134
135
136
137
138
139
140
141
142
    """Computes scale-invariant source-to-distortion ratio.

    1. adjust both estimate and reference to have 0-mean
    2. scale the reference signal with power(s_est * s_ref) / powr(s_ref * s_ref)
    3. compute SNR between adjusted estimate and reference.

    Args:
        estimate (torch.Tensor): Estimtaed signal.
            Shape: [batch, speakers (can be 1), time frame]
        reference (torch.Tensor): Reference signal.
            Shape: [batch, speakers, time frame]
143
        mask (torch.Tensor or None, optional): Binary mask to indicate padded value (0) or valid value (1).
144
            Shape: [batch, 1, time frame]
145
        epsilon (float, optional): constant value used to stabilize division.
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

    Returns:
        torch.Tensor: scale-invariant source-to-distortion ratio.
        Shape: [batch, speaker]

    References:
        - Single-channel multi-speaker separation using deep clustering
          Y. Isik, J. Le Roux, Z. Chen, S. Watanabe, and J. R. Hershey,
        - Conv-TasNet: Surpassing Ideal Time--Frequency Magnitude Masking for Speech Separation
          Luo, Yi and Mesgarani, Nima
          https://arxiv.org/abs/1809.07454

    Notes:
        This function is tested to produce the exact same result as the reference implementation,
        *when the inputs have 0-mean*
        https://github.com/naplab/Conv-TasNet/blob/e66d82a8f956a69749ec8a4ae382217faa097c5c/utility/sdr.py#L107-L153
    """
163
    return _sdr_pit(estimate, reference, mask, epsilon)
164
165


166
167
168
169
170
171
172
def sdri(
        estimate: torch.Tensor,
        reference: torch.Tensor,
        mix: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        epsilon: float = 1e-8,
) -> torch.Tensor:
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    """Compute the improvement of SDR (SDRi).

    This function compute how much SDR is improved if the estimation is changed from
    the original mixture signal to the actual estimated source signals. That is,
    ``SDR(estimate, reference) - SDR(mix, reference)``.

    For computing ``SDR(estimate, reference)``, PIT (permutation invariant training) is applied,
    so that best combination of sources between the reference signals and the esimate signals
    are picked.

    Args:
        estimate (torch.Tensor): Estimated source signals.
            Shape: [batch, speakers, time frame]
        reference (torch.Tensor): Reference (original) source signals.
            Shape: [batch, speakers, time frame]
        mix (torch.Tensor): Mixed souce signals, from which the setimated signals were generated.
            Shape: [batch, speakers == 1, time frame]
190
        mask (torch.Tensor or None, optional): Binary mask to indicate padded value (0) or valid value (1).
191
            Shape: [batch, 1, time frame]
192
        epsilon (float, optional): constant value used to stabilize division.
193
194
195
196
197
198
199
200
201

    Returns:
        torch.Tensor: Improved SDR. Shape: [batch, ]

    References:
        - Conv-TasNet: Surpassing Ideal Time--Frequency Magnitude Masking for Speech Separation
          Luo, Yi and Mesgarani, Nima
          https://arxiv.org/abs/1809.07454
    """
202
203
    sdr_ = sdr_pit(estimate, reference, mask=mask, epsilon=epsilon)  # [batch, ]
    base_sdr = sdr(mix, reference, mask=mask, epsilon=epsilon)  # [batch, speaker]
204
    return (sdr_.unsqueeze(1) - base_sdr).mean(dim=1)