test_transforms.py 4.28 KB
Newer Older
1
from __future__ import print_function
David Pollack's avatar
David Pollack committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import torch
import torchaudio
import torchaudio.transforms as transforms
import numpy as np
import unittest

class Tester(unittest.TestCase):

    sr = 16000
    freq = 440
    volume = 0.3
    sig = (torch.cos(2*np.pi*torch.arange(0, 4*sr) * freq/sr)).float()
    sig.unsqueeze_(1)
    sig = (sig*volume*2**31).long()

    def test_scale(self):

        audio_orig = self.sig.clone()
        result = transforms.Scale()(audio_orig)
        self.assertTrue(result.min() >= -1. and result.max() <= 1.,
22
                        print("min: {}, max: {}".format(result.min(), result.max())))
David Pollack's avatar
David Pollack committed
23
24
25
26
27

        maxminmax = np.abs([audio_orig.min(), audio_orig.max()]).max().astype(np.float)
        result = transforms.Scale(factor=maxminmax)(audio_orig)
        self.assertTrue((result.min() == -1. or result.max() == 1.) and
                        result.min() >= -1. and result.max() <= 1.,
28
                        print("min: {}, max: {}".format(result.min(), result.max())))
David Pollack's avatar
David Pollack committed
29
30
31
32
33
34
35
36
37
38

    def test_pad_trim(self):

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 1.2)

        result = transforms.PadTrim(max_len=length_new)(audio_orig)

        self.assertTrue(result.size(0) == length_new,
39
                        print("old size: {}, new size: {}".format(audio_orig.size(0), result.size(0))))
David Pollack's avatar
David Pollack committed
40
41
42
43
44
45
46
47

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 0.8)

        result = transforms.PadTrim(max_len=length_new)(audio_orig)

        self.assertTrue(result.size(0) == length_new,
48
                        print("old size: {}, new size: {}".format(audio_orig.size(0), result.size(0))))
David Pollack's avatar
David Pollack committed
49
50
51


    def test_downmix_mono(self):
David Pollack's avatar
David Pollack committed
52

David Pollack's avatar
David Pollack committed
53
54
55
56
57
58
59
60
61
62
63
64
65
        audio_L = self.sig.clone()
        audio_R = self.sig.clone()
        R_idx = int(audio_R.size(0) * 0.1)
        audio_R = torch.cat((audio_R[R_idx:], audio_R[:R_idx]))

        audio_Stereo = torch.cat((audio_L, audio_R), dim=1)

        self.assertTrue(audio_Stereo.size(1) == 2)

        result = transforms.DownmixMono()(audio_Stereo)

        self.assertTrue(result.size(1) == 1)

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    def test_lc2cl(self):

        audio = self.sig.clone()
        result = transforms.LC2CL()(audio)
        self.assertTrue(result.size()[::-1] == audio.size())

    def test_mel(self):

        audio = self.sig.clone()
        audio = transforms.Scale()(audio)
        self.assertTrue(len(audio.size()) == 2)
        result = transforms.MEL()(audio)
        self.assertTrue(len(result.size()) == 3)
        result = transforms.BLC2CBL()(result)
        self.assertTrue(len(result.size()) == 3)

David Pollack's avatar
David Pollack committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    def test_compose(self):

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 1.2)
        maxminmax = np.abs([audio_orig.min(), audio_orig.max()]).max().astype(np.float)

        tset = (transforms.Scale(factor=maxminmax),
                transforms.PadTrim(max_len=length_new))
        result = transforms.Compose(tset)(audio_orig)

        self.assertTrue(np.abs([result.min(), result.max()]).max() == 1.)

        self.assertTrue(result.size(0) == length_new)

David Pollack's avatar
David Pollack committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    def test_mu_law_companding(self):

        sig = self.sig.clone()

        quantization_channels = 256
        sig = self.sig.numpy()
        sig = sig / np.abs(sig).max()
        self.assertTrue(sig.min() >= -1. and sig.max() <= 1.)

        sig_mu = transforms.MuLawEncoding(quantization_channels)(sig)
        self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels)

        sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu)
        self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.)

        #diff = sig - sig_exp
        #mse = np.linalg.norm(diff) / diff.shape[0]
        #self.assertTrue(mse, np.isclose(mse, 0., atol=1e-4)) # not always true

        sig = self.sig.clone()
        sig = sig / torch.abs(sig).max()
        self.assertTrue(sig.min() >= -1. and sig.max() <= 1.)

        sig_mu = transforms.MuLawEncoding(quantization_channels)(sig)
        self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels)

        sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu)
        self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.)
David Pollack's avatar
David Pollack committed
125
126
127

if __name__ == '__main__':
    unittest.main()