"vscode:/vscode.git/clone" did not exist on "b2b42cbd956d35bda7bb27630a2da7bc152c3590"
online_asr_tutorial.py 8.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
"""
Online ASR with Emformer RNN-T
==============================

**Author**: `Jeff Hwang <jeffhwang@fb.com>`__, `Moto Hira <moto@fb.com>`__

This tutorial shows how to use Emformer RNN-T and streaming API
to perform online speech recognition.

"""

######################################################################
#
14
# .. note::
15
#
16
17
#    This tutorial requires Streaming API, FFmpeg libraries (>=4.1, <5),
#    and SentencePiece.
18
#
19
#    The Streaming API is available in nightly builds.
20
21
#    Please refer to https://pytorch.org/get-started/locally/
#    for instructions.
22
#
23
#    There are multiple ways to install FFmpeg libraries.
24
#    If you are using Anaconda Python distribution,
25
26
#    ``conda install 'ffmpeg<5'`` will install
#    the required FFmpeg libraries.
27
#
28
#    You can install SentencePiece by running ``pip install sentencepiece``.
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
######################################################################
# 1. Overview
# -----------
#
# Performing online speech recognition is composed of the following steps
#
# 1. Build the inference pipeline
#    Emformer RNN-T is composed of three components: feature extractor,
#    decoder and token processor.
# 2. Format the waveform into chunks of expected sizes.
# 3. Pass data through the pipeline.

######################################################################
# 2. Preparation
# --------------
#

47
48
49
50
import IPython
import torch
import torchaudio

51
try:
52
    from torchaudio.io import StreamReader
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
except ModuleNotFoundError:
    try:
        import google.colab

        print(
            """
            To enable running this notebook in Google Colab, install nightly
            torch and torchaudio builds and the requisite third party libraries by
            adding the following code block to the top of the notebook before running it:

            !pip3 uninstall -y torch torchvision torchaudio
            !pip3 install --pre torch torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
            !pip3 install sentencepiece
            !add-apt-repository -y ppa:savoury1/ffmpeg4
            !apt-get -qq install -y ffmpeg
            """
        )
    except ModuleNotFoundError:
        pass
    raise

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
print(torch.__version__)
print(torchaudio.__version__)


######################################################################
# 3. Construct the pipeline
# -------------------------
#
# Pre-trained model weights and related pipeline components are
# bundled as :py:func:`torchaudio.pipelines.RNNTBundle`.
#
# We use :py:func:`torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH`,
# which is a Emformer RNN-T model trained on LibriSpeech dataset.
#

bundle = torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH

feature_extractor = bundle.get_streaming_feature_extractor()
decoder = bundle.get_decoder()
token_processor = bundle.get_token_processor()

######################################################################
# Streaming inference works on input data with overlap.
moto's avatar
moto committed
97
98
99
100
101
# Emformer RNN-T model treats the newest portion of the input data
# as the "right context" — a preview of future context.
# In each inference call, the model expects the main segment
# to start from this right context from the previous inference call.
# The following figure illustrates this.
102
103
104
105
106
107
108
109
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/emformer_rnnt_context.png
#
# The size of main segment and right context, along with
# the expected sample rate can be retrieved from bundle.
#

sample_rate = bundle.sample_rate
110
111
segment_length = bundle.segment_length * bundle.hop_length
context_length = bundle.right_context_length * bundle.hop_length
112
113

print(f"Sample rate: {sample_rate}")
114
115
print(f"Main segment: {segment_length} frames ({segment_length / sample_rate} seconds)")
print(f"Right context: {context_length} frames ({context_length / sample_rate} seconds)")
116
117
118
119
120

######################################################################
# 4. Configure the audio stream
# -----------------------------
#
121
# Next, we configure the input audio stream using :py:func:`~torchaudio.io.StreamReader`.
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#
# For the detail of this API, please refer to the
# `Media Stream API tutorial <./streaming_api_tutorial.html>`__.
#

######################################################################
# The following audio file was originally published by LibriVox project,
# and it is in the public domain.
#
# https://librivox.org/great-pirate-stories-by-joseph-lewis-french/
#
# It was re-uploaded for the sake of the tutorial.
#
src = "https://download.pytorch.org/torchaudio/tutorial-assets/greatpiratestories_00_various.mp3"

137
streamer = StreamReader(src)
138
streamer.add_basic_audio_stream(frames_per_chunk=segment_length, sample_rate=bundle.sample_rate)
139
140
141
142
143

print(streamer.get_src_stream_info(0))
print(streamer.get_out_stream_info(0))

######################################################################
moto's avatar
moto committed
144
145
146
147
148
149
150
151
152
# As previously explained, Emformer RNN-T model expects input data with
# overlaps; however, `Streamer` iterates the source media without overlap,
# so we make a helper structure that caches a part of input data from
# `Streamer` as right context and then appends it to the next input data from
# `Streamer`.
#
# The following figure illustrates this.
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/emformer_rnnt_streamer_context.png
153
154
155
156
#


class ContextCacher:
moto's avatar
moto committed
157
    """Cache the end of input data and prepend the next input data with it.
158
159

    Args:
160
161
162
        segment_length (int): The size of main segment.
            If the incoming segment is shorter, then the segment is padded.
        context_length (int): The size of the context, cached and appended.
163
164
    """

165
166
167
168
    def __init__(self, segment_length: int, context_length: int):
        self.segment_length = segment_length
        self.context_length = context_length
        self.context = torch.zeros([context_length])
169
170

    def __call__(self, chunk: torch.Tensor):
171
172
173
174
        if chunk.size(0) < self.segment_length:
            chunk = torch.nn.functional.pad(chunk, (0, self.segment_length - chunk.size(0)))
        chunk_with_context = torch.cat((self.context, chunk))
        self.context = chunk[-self.context_length :]
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        return chunk_with_context


######################################################################
# 5. Run stream inference
# -----------------------
#
# Finally, we run the recognition.
#
# First, we initialize the stream iterator, context cacher, and
# state and hypothesis that are used by decoder to carry over the
# decoding state between inference calls.
#

189
cacher = ContextCacher(segment_length, context_length)
190
191
192
193
194
195
196
197
198
199
200

state, hypothesis = None, None

######################################################################
# Next we, run the inference.
#
# For the sake of better display, we create a helper function which
# processes the source stream up to the given times and call it
# repeatedly.
#

moto's avatar
moto committed
201
202
stream_iterator = streamer.stream()

203
204
205
206
207

@torch.inference_mode()
def run_inference(num_iter=200):
    global state, hypothesis
    chunks = []
moto's avatar
moto committed
208
    for i, (chunk,) in enumerate(stream_iterator, start=1):
209
        segment = cacher(chunk[:, 0])
210
211
212
        features, length = feature_extractor(segment)
        hypos, state = decoder.infer(features, length, 10, state=state, hypothesis=hypothesis)
        hypothesis = hypos[0]
213
        transcript = token_processor(hypothesis[0], lstrip=False)
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        print(transcript, end="", flush=True)

        chunks.append(chunk)
        if i == num_iter:
            break

    return IPython.display.Audio(torch.cat(chunks).T.numpy(), rate=bundle.sample_rate)


######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()