audio_resampling_tutorial.py 17.1 KB
Newer Older
1
2
3
4
5
# -*- coding: utf-8 -*-
"""
Audio Resampling
================

6
7
**Author**: `Caroline Chen <carolinechen@meta.com>`__, `Moto Hira <moto@meta.com>`__

8
This tutorial shows how to use torchaudio's resampling API.
9
10
11
12
13
14
15
16
17
18
19
"""

import torch
import torchaudio
import torchaudio.functional as F
import torchaudio.transforms as T

print(torch.__version__)
print(torchaudio.__version__)

######################################################################
20
21
# Preparation
# -----------
22
#
23
24
# First, we import the modules and define the helper functions.
#
25
26

import math
moto's avatar
moto committed
27
import timeit
28
29

import librosa
moto's avatar
moto committed
30
import resampy
31
import matplotlib.pyplot as plt
moto's avatar
moto committed
32
import matplotlib.colors as mcolors
33
import pandas as pd
34
from IPython.display import Audio, display
35

36
37
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
38
39
40
41
42

DEFAULT_OFFSET = 201


def _get_log_freq(sample_rate, max_sweep_rate, offset):
43
    """Get freqs evenly spaced out in log-scale, between [0, max_sweep_rate // 2]
44

45
46
47
48
    offset is used to avoid negative infinity `log(offset + x)`.

    """
    start, stop = math.log(offset), math.log(offset + max_sweep_rate // 2)
49
    return torch.exp(torch.linspace(start, stop, sample_rate, dtype=torch.double)) - offset
50
51
52


def _get_inverse_log_freq(freq, sample_rate, offset):
53
54
55
56
    """Find the time where the given frequency is given by _get_log_freq"""
    half = sample_rate // 2
    return sample_rate * (math.log(1 + freq / offset) / math.log(1 + half / offset))

57
58

def _get_freq_ticks(sample_rate, offset, f_max):
59
60
    # Given the original sample rate used for generating the sweep,
    # find the x-axis value where the log-scale major frequency values fall in
moto's avatar
moto committed
61
    times, freq = [], []
62
63
    for exp in range(2, 5):
        for v in range(1, 10):
64
            f = v * 10**exp
65
66
            if f < sample_rate // 2:
                t = _get_inverse_log_freq(f, sample_rate, offset) / sample_rate
moto's avatar
moto committed
67
                times.append(t)
68
69
                freq.append(f)
    t_max = _get_inverse_log_freq(f_max, sample_rate, offset) / sample_rate
moto's avatar
moto committed
70
    times.append(t_max)
71
    freq.append(f_max)
moto's avatar
moto committed
72
    return times, freq
73

74
75

def get_sine_sweep(sample_rate, offset=DEFAULT_OFFSET):
76
77
78
79
80
81
82
83
84
85
86
87
    max_sweep_rate = sample_rate
    freq = _get_log_freq(sample_rate, max_sweep_rate, offset)
    delta = 2 * math.pi * freq / sample_rate
    cummulative = torch.cumsum(delta, dim=0)
    signal = torch.sin(cummulative).unsqueeze(dim=0)
    return signal


def plot_sweep(
    waveform,
    sample_rate,
    title,
88
    max_sweep_rate=48000,
89
90
91
92
93
94
95
    offset=DEFAULT_OFFSET,
):
    x_ticks = [100, 500, 1000, 5000, 10000, 20000, max_sweep_rate // 2]
    y_ticks = [1000, 5000, 10000, 20000, sample_rate // 2]

    time, freq = _get_freq_ticks(max_sweep_rate, offset, sample_rate // 2)
    freq_x = [f if f in x_ticks and f <= max_sweep_rate // 2 else None for f in freq]
96
    freq_y = [f for f in freq if f in y_ticks and 1000 <= f <= sample_rate // 2]
97
98

    figure, axis = plt.subplots(1, 1)
99
    _, _, _, cax = axis.specgram(waveform[0].numpy(), Fs=sample_rate)
100
101
102
103
104
105
106
    plt.xticks(time, freq_x)
    plt.yticks(freq_y, freq_y)
    axis.set_xlabel("Original Signal Frequency (Hz, log scale)")
    axis.set_ylabel("Waveform Frequency (Hz)")
    axis.xaxis.grid(True, alpha=0.67)
    axis.yaxis.grid(True, alpha=0.67)
    figure.suptitle(f"{title} (sample rate: {sample_rate} Hz)")
107
    plt.colorbar(cax)
108
109
    plt.show(block=True)

110
111

######################################################################
112
113
114
# Resampling Overview
# -------------------
#
115
# To resample an audio waveform from one freqeuncy to another, you can use
moto's avatar
moto committed
116
# :py:class:`torchaudio.transforms.Resample` or
117
118
119
120
# :py:func:`torchaudio.functional.resample`.
# ``transforms.Resample`` precomputes and caches the kernel used for resampling,
# while ``functional.resample`` computes it on the fly, so using
# ``torchaudio.transforms.Resample`` will result in a speedup when resampling
121
122
123
124
125
126
# multiple waveforms using the same parameters (see Benchmarking section).
#
# Both resampling methods use `bandlimited sinc
# interpolation <https://ccrma.stanford.edu/~jos/resample/>`__ to compute
# signal values at arbitrary time steps. The implementation involves
# convolution, so we can take advantage of GPU / multithreading for
127
128
129
130
131
132
133
134
# performance improvements.
#
# .. note::
#
#    When using resampling in multiple subprocesses, such as data loading
#    with multiple worker processes, your application might create more
#    threads than your system can handle efficiently.
#    Setting ``torch.set_num_threads(1)`` might help in this case.
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#
# Because a finite number of samples can only represent a finite number of
# frequencies, resampling does not produce perfect results, and a variety
# of parameters can be used to control for its quality and computational
# speed. We demonstrate these properties through resampling a logarithmic
# sine sweep, which is a sine wave that increases exponentially in
# frequency over time.
#
# The spectrograms below show the frequency representation of the signal,
# where the x-axis corresponds to the frequency of the original
# waveform (in log scale), y-axis the frequency of the
# plotted waveform, and color intensity the amplitude.
#

sample_rate = 48000
waveform = get_sine_sweep(sample_rate)
151

152
plot_sweep(waveform, sample_rate, title="Original Waveform")
153
Audio(waveform.numpy()[0], rate=sample_rate)
154

155
156
157
158
159
160
######################################################################
#
# Now we resample (downsample) it.
#
# We see that in the spectrogram of the resampled waveform, there is an
# artifact, which was not present in the original waveform.
moto's avatar
moto committed
161
162
163
# This effect is called aliasing.
# `This page <https://music.arts.uci.edu/dobrian/digitalaudio.htm>`__ has
# an explanation of how it happens, and why it looks like a reflection.
164
165

resample_rate = 32000
166
167
168
resampler = T.Resample(sample_rate, resample_rate, dtype=waveform.dtype)
resampled_waveform = resampler(waveform)

169
170
plot_sweep(resampled_waveform, resample_rate, title="Resampled Waveform")
Audio(resampled_waveform.numpy()[0], rate=resample_rate)
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

######################################################################
# Controling resampling quality with parameters
# ---------------------------------------------
#
# Lowpass filter width
# ~~~~~~~~~~~~~~~~~~~~
#
# Because the filter used for interpolation extends infinitely, the
# ``lowpass_filter_width`` parameter is used to control for the width of
# the filter to use to window the interpolation. It is also referred to as
# the number of zero crossings, since the interpolation passes through
# zero at every time unit. Using a larger ``lowpass_filter_width``
# provides a sharper, more precise filter, but is more computationally
# expensive.
#

sample_rate = 48000
resample_rate = 32000

191
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, lowpass_filter_width=6)
192
193
plot_sweep(resampled_waveform, resample_rate, title="lowpass_filter_width=6")

194
195
196
######################################################################
#

197
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, lowpass_filter_width=128)
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
plot_sweep(resampled_waveform, resample_rate, title="lowpass_filter_width=128")

######################################################################
# Rolloff
# ~~~~~~~
#
# The ``rolloff`` parameter is represented as a fraction of the Nyquist
# frequency, which is the maximal frequency representable by a given
# finite sample rate. ``rolloff`` determines the lowpass filter cutoff and
# controls the degree of aliasing, which takes place when frequencies
# higher than the Nyquist are mapped to lower frequencies. A lower rolloff
# will therefore reduce the amount of aliasing, but it will also reduce
# some of the higher frequencies.
#


sample_rate = 48000
resample_rate = 32000

resampled_waveform = F.resample(waveform, sample_rate, resample_rate, rolloff=0.99)
plot_sweep(resampled_waveform, resample_rate, title="rolloff=0.99")

220
221
222
######################################################################
#

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, rolloff=0.8)
plot_sweep(resampled_waveform, resample_rate, title="rolloff=0.8")


######################################################################
# Window function
# ~~~~~~~~~~~~~~~
#
# By default, ``torchaudio``’s resample uses the Hann window filter, which is
# a weighted cosine function. It additionally supports the Kaiser window,
# which is a near optimal window function that contains an additional
# ``beta`` parameter that allows for the design of the smoothness of the
# filter and width of impulse. This can be controlled using the
# ``resampling_method`` parameter.
#


sample_rate = 48000
resample_rate = 32000

243
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, resampling_method="sinc_interp_hann")
244
245
plot_sweep(resampled_waveform, resample_rate, title="Hann Window Default")

246
247
248
######################################################################
#

249
resampled_waveform = F.resample(waveform, sample_rate, resample_rate, resampling_method="sinc_interp_kaiser")
250
251
252
253
254
255
256
257
258
259
260
261
262
263
plot_sweep(resampled_waveform, resample_rate, title="Kaiser Window Default")


######################################################################
# Comparison against librosa
# --------------------------
#
# ``torchaudio``’s resample function can be used to produce results similar to
# that of librosa (resampy)’s kaiser window resampling, with some noise
#

sample_rate = 48000
resample_rate = 32000

264
######################################################################
265
# kaiser_best
266
267
# ~~~~~~~~~~~
#
268
269
270
271
272
273
resampled_waveform = F.resample(
    waveform,
    sample_rate,
    resample_rate,
    lowpass_filter_width=64,
    rolloff=0.9475937167399596,
274
    resampling_method="sinc_interp_kaiser",
275
    beta=14.769656459379492,
276
277
278
)
plot_sweep(resampled_waveform, resample_rate, title="Kaiser Window Best (torchaudio)")

279
280
281
######################################################################
#

282
librosa_resampled_waveform = torch.from_numpy(
hwangjeff's avatar
hwangjeff committed
283
    librosa.resample(waveform.squeeze().numpy(), orig_sr=sample_rate, target_sr=resample_rate, res_type="kaiser_best")
284
).unsqueeze(0)
285
plot_sweep(librosa_resampled_waveform, resample_rate, title="Kaiser Window Best (librosa)")
286

287
288
289
######################################################################
#

290
291
292
mse = torch.square(resampled_waveform - librosa_resampled_waveform).mean().item()
print("torchaudio and librosa kaiser best MSE:", mse)

293
######################################################################
294
# kaiser_fast
295
296
# ~~~~~~~~~~~
#
297
298
299
300
301
302
resampled_waveform = F.resample(
    waveform,
    sample_rate,
    resample_rate,
    lowpass_filter_width=16,
    rolloff=0.85,
303
    resampling_method="sinc_interp_kaiser",
304
305
    beta=8.555504641634386,
)
306
307
308
309
plot_sweep(resampled_waveform, resample_rate, title="Kaiser Window Fast (torchaudio)")

######################################################################
#
310
311

librosa_resampled_waveform = torch.from_numpy(
hwangjeff's avatar
hwangjeff committed
312
    librosa.resample(waveform.squeeze().numpy(), orig_sr=sample_rate, target_sr=resample_rate, res_type="kaiser_fast")
313
).unsqueeze(0)
314
plot_sweep(librosa_resampled_waveform, resample_rate, title="Kaiser Window Fast (librosa)")
315

316
317
318
######################################################################
#

319
320
321
322
323
324
325
326
327
328
329
330
331
332
mse = torch.square(resampled_waveform - librosa_resampled_waveform).mean().item()
print("torchaudio and librosa kaiser fast MSE:", mse)

######################################################################
# Performance Benchmarking
# ------------------------
#
# Below are benchmarks for downsampling and upsampling waveforms between
# two pairs of sampling rates. We demonstrate the performance implications
# that the ``lowpass_filter_wdith``, window type, and sample rates can
# have. Additionally, we provide a comparison against ``librosa``\ ’s
# ``kaiser_best`` and ``kaiser_fast`` using their corresponding parameters
# in ``torchaudio``.
#
moto's avatar
moto committed
333
334
335
336
337
338

print(f"torchaudio: {torchaudio.__version__}")
print(f"librosa: {librosa.__version__}")
print(f"resampy: {resampy.__version__}")

######################################################################
339
340
#

moto's avatar
moto committed
341
342
343
344
345
346
def benchmark_resample_functional(
    waveform,
    sample_rate,
    resample_rate,
    lowpass_filter_width=6,
    rolloff=0.99,
347
    resampling_method="sinc_interp_hann",
moto's avatar
moto committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    beta=None,
    iters=5,
):
    return timeit.timeit(
        stmt='''
torchaudio.functional.resample(
    waveform,
    sample_rate,
    resample_rate,
    lowpass_filter_width=lowpass_filter_width,
    rolloff=rolloff,
    resampling_method=resampling_method,
    beta=beta,
)
        ''',
        setup='import torchaudio',
        number=iters,
        globals=locals(),
    ) * 1000 / iters


######################################################################
#
371

moto's avatar
moto committed
372
def benchmark_resample_transforms(
373
374
375
376
377
    waveform,
    sample_rate,
    resample_rate,
    lowpass_filter_width=6,
    rolloff=0.99,
378
    resampling_method="sinc_interp_hann",
379
380
381
    beta=None,
    iters=5,
):
moto's avatar
moto committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    return timeit.timeit(
        stmt='resampler(waveform)',
        setup='''
import torchaudio

resampler = torchaudio.transforms.Resample(
    sample_rate,
    resample_rate,
    lowpass_filter_width=lowpass_filter_width,
    rolloff=rolloff,
    resampling_method=resampling_method,
    dtype=waveform.dtype,
    beta=beta,
)
resampler.to(waveform.device)
        ''',
        number=iters,
        globals=locals(),
    ) * 1000 / iters
401
402
403
404
405


######################################################################
#

moto's avatar
moto committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
def benchmark_resample_librosa(
    waveform,
    sample_rate,
    resample_rate,
    res_type=None,
    iters=5,
):
    waveform_np = waveform.squeeze().numpy()
    return timeit.timeit(
        stmt='''
librosa.resample(
    waveform_np,
    orig_sr=sample_rate,
    target_sr=resample_rate,
    res_type=res_type,
)
        ''',
        setup='import librosa',
        number=iters,
        globals=locals(),
    ) * 1000 / iters


######################################################################
#
431

moto's avatar
moto committed
432
def benchmark(sample_rate, resample_rate):
433
    times, rows = [], []
moto's avatar
moto committed
434
435
436
    waveform = get_sine_sweep(sample_rate).to(torch.float32)

    args = (waveform, sample_rate, resample_rate)
437
438

    # sinc 64 zero-crossings
moto's avatar
moto committed
439
440
441
    f_time = benchmark_resample_functional(*args, lowpass_filter_width=64)
    t_time = benchmark_resample_transforms(*args, lowpass_filter_width=64)
    times.append([None, f_time, t_time])
442
443
444
    rows.append("sinc (width 64)")

    # sinc 6 zero-crossings
moto's avatar
moto committed
445
446
447
    f_time = benchmark_resample_functional(*args, lowpass_filter_width=16)
    t_time = benchmark_resample_transforms(*args, lowpass_filter_width=16)
    times.append([None, f_time, t_time])
448
449
450
    rows.append("sinc (width 16)")

    # kaiser best
moto's avatar
moto committed
451
452
453
    kwargs = {
        "lowpass_filter_width": 64,
        "rolloff": 0.9475937167399596,
454
        "resampling_method": "sinc_interp_kaiser",
moto's avatar
moto committed
455
456
457
458
459
460
        "beta": 14.769656459379492,
    }
    lib_time = benchmark_resample_librosa(*args, res_type="kaiser_best")
    f_time = benchmark_resample_functional(*args, **kwargs)
    t_time = benchmark_resample_transforms(*args, **kwargs)
    times.append([lib_time, f_time, t_time])
461
462
463
    rows.append("kaiser_best")

    # kaiser fast
moto's avatar
moto committed
464
465
466
    kwargs = {
        "lowpass_filter_width": 16,
        "rolloff": 0.85,
467
        "resampling_method": "sinc_interp_kaiser",
moto's avatar
moto committed
468
469
470
471
472
473
        "beta": 8.555504641634386,
    }
    lib_time = benchmark_resample_librosa(*args, res_type="kaiser_fast")
    f_time = benchmark_resample_functional(*args, **kwargs)
    t_time = benchmark_resample_transforms(*args, **kwargs)
    times.append([lib_time, f_time, t_time])
474
475
    rows.append("kaiser_fast")

476
    df = pd.DataFrame(times, columns=["librosa", "functional", "transforms"], index=rows)
moto's avatar
moto committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    return df


######################################################################
#
def plot(df):
    print(df.round(2))
    ax = df.plot(kind="bar")
    plt.ylabel("Time Elapsed [ms]")
    plt.xticks(rotation = 0, fontsize=10)
    for cont, col, color in zip(ax.containers, df.columns, mcolors.TABLEAU_COLORS):
        label = ["N/A" if v != v else str(v) for v in df[col].round(2)]
        ax.bar_label(cont, labels=label, color=color, fontweight="bold", fontsize="x-small")


######################################################################
#
# Downsample (48 -> 44.1 kHz)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~

df = benchmark(48_000, 44_100)
plot(df)

######################################################################
#
# Downsample (16 -> 8 kHz)
# ~~~~~~~~~~~~~~~~~~~~~~~~

df = benchmark(16_000, 8_000)
plot(df)

######################################################################
#
# Upsample (44.1 -> 48 kHz)
# ~~~~~~~~~~~~~~~~~~~~~~~~~

df = benchmark(44_100, 48_000)
plot(df)

######################################################################
#
# Upsample (8 -> 16 kHz)
# ~~~~~~~~~~~~~~~~~~~~~~

df = benchmark(8_000, 16_000)
plot(df)
523

moto's avatar
moto committed
524
525
526
527
528
529
530
531
532
533
######################################################################
#
# Summary
# ~~~~~~~
#
# To elaborate on the results:
#
# - a larger ``lowpass_filter_width`` results in a larger resampling kernel,
#   and therefore increases computation time for both the kernel computation
#   and convolution
534
535
# - using ``sinc_interp_kaiser`` results in longer computation times than the default
#   ``sinc_interp_hann`` because it is more complex to compute the intermediate
moto's avatar
moto committed
536
537
538
539
#   window values
# - a large GCD between the sample and resample rate will result
#   in a simplification that allows for a smaller kernel and faster kernel computation.
#