test_jit.py 6.31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torchaudio.functional as F
import torchaudio.transforms as transforms
import unittest

RUN_CUDA = torch.cuda.is_available()
print('Run test with cuda:', RUN_CUDA)


class Test_JIT(unittest.TestCase):
    def _get_script_module(self, f, *args):
        # takes a transform function `f` and wraps it in a script module
        class MyModule(torch.jit.ScriptModule):
            def __init__(self):
                super(MyModule, self).__init__()
                self.module = f(*args)
                self.module.eval()

            @torch.jit.script_method
            def forward(self, tensor):
                return self.module(tensor)

        return MyModule()

    def _test_script_module(self, tensor, f, *args):
        # tests a script module that wraps a transform function `f` by feeding
        # the tensor into the forward function
        jit_out = self._get_script_module(f, *args).cuda()(tensor)
        py_out = f(*args).cuda()(tensor)

        self.assertTrue(torch.allclose(jit_out, py_out))

    def test_torchscript_pad_trim(self):
        @torch.jit.script
35
36
37
        def jit_method(tensor, max_len, fill_value):
            # type: (Tensor, int, float) -> Tensor
            return F.pad_trim(tensor, max_len, fill_value)
38

39
        tensor = torch.rand((1, 10))
40
41
42
        max_len = 5
        fill_value = 3.

43
44
        jit_out = jit_method(tensor, max_len, fill_value)
        py_out = F.pad_trim(tensor, max_len, fill_value)
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_pad_trim(self):
        tensor = torch.rand((1, 10), device="cuda")
        max_len = 5

        self._test_script_module(tensor, transforms.PadTrim, max_len)

    def test_torchscript_spectrogram(self):
        @torch.jit.script
        def jit_method(sig, pad, window, n_fft, hop, ws, power, normalize):
            # type: (Tensor, int, Tensor, int, int, int, int, bool) -> Tensor
            return F.spectrogram(sig, pad, window, n_fft, hop, ws, power, normalize)

        tensor = torch.rand((1, 1000))
        n_fft = 400
        ws = 400
        hop = 200
        pad = 0
        window = torch.hann_window(ws)
        power = 2
        normalize = False

        jit_out = jit_method(tensor, pad, window, n_fft, hop, ws, power, normalize)
        py_out = F.spectrogram(tensor, pad, window, n_fft, hop, ws, power, normalize)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_Spectrogram(self):
        tensor = torch.rand((1, 1000), device="cuda")

        self._test_script_module(tensor, transforms.Spectrogram)

    def test_torchscript_create_fb_matrix(self):
        @torch.jit.script
        def jit_method(n_stft, f_min, f_max, n_mels):
            # type: (int, float, float, int) -> Tensor
            return F.create_fb_matrix(n_stft, f_min, f_max, n_mels)

        n_stft = 100
        f_min = 0.
        f_max = 20.
        n_mels = 10

        jit_out = jit_method(n_stft, f_min, f_max, n_mels)
        py_out = F.create_fb_matrix(n_stft, f_min, f_max, n_mels)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MelScale(self):
        spec_f = torch.rand((1, 6, 201), device="cuda")

        self._test_script_module(spec_f, transforms.MelScale)

    def test_torchscript_spectrogram_to_DB(self):
        @torch.jit.script
        def jit_method(spec, multiplier, amin, db_multiplier, top_db):
            # type: (Tensor, float, float, float, Optional[float]) -> Tensor
            return F.spectrogram_to_DB(spec, multiplier, amin, db_multiplier, top_db)

109
        spec = torch.rand((6, 201))
110
111
112
113
114
115
116
117
118
119
120
121
        multiplier = 10.
        amin = 1e-10
        db_multiplier = 0.
        top_db = 80.

        jit_out = jit_method(spec, multiplier, amin, db_multiplier, top_db)
        py_out = F.spectrogram_to_DB(spec, multiplier, amin, db_multiplier, top_db)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_SpectrogramToDB(self):
122
        spec = torch.rand((6, 201), device="cuda")
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

        self._test_script_module(spec, transforms.SpectrogramToDB)

    def test_torchscript_create_dct(self):
        @torch.jit.script
        def jit_method(n_mfcc, n_mels, norm):
            # type: (int, int, Optional[str]) -> Tensor
            return F.create_dct(n_mfcc, n_mels, norm)

        n_mfcc = 40
        n_mels = 128
        norm = 'ortho'

        jit_out = jit_method(n_mfcc, n_mels, norm)
        py_out = F.create_dct(n_mfcc, n_mels, norm)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MFCC(self):
        tensor = torch.rand((1, 1000), device="cuda")

        self._test_script_module(tensor, transforms.MFCC)

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MelSpectrogram(self):
        tensor = torch.rand((1, 1000), device="cuda")

        self._test_script_module(tensor, transforms.MelSpectrogram)

    def test_torchscript_mu_law_encoding(self):
        @torch.jit.script
        def jit_method(tensor, qc):
            # type: (Tensor, int) -> Tensor
            return F.mu_law_encoding(tensor, qc)

159
        tensor = torch.rand((1, 10))
160
161
162
163
164
165
166
167
168
        qc = 256

        jit_out = jit_method(tensor, qc)
        py_out = F.mu_law_encoding(tensor, qc)

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
    def test_scriptmodule_MuLawEncoding(self):
169
        tensor = torch.rand((1, 10), device="cuda")
170
171
172

        self._test_script_module(tensor, transforms.MuLawEncoding)

173
    def test_torchscript_mu_law_decoding(self):
174
175
176
        @torch.jit.script
        def jit_method(tensor, qc):
            # type: (Tensor, int) -> Tensor
177
            return F.mu_law_decoding(tensor, qc)
178

179
        tensor = torch.rand((1, 10))
180
181
182
        qc = 256

        jit_out = jit_method(tensor, qc)
183
        py_out = F.mu_law_decoding(tensor, qc)
184
185
186
187

        self.assertTrue(torch.allclose(jit_out, py_out))

    @unittest.skipIf(not RUN_CUDA, "no CUDA")
188
    def test_scriptmodule_MuLawDecoding(self):
189
        tensor = torch.rand((1, 10), device="cuda")
190

191
        self._test_script_module(tensor, transforms.MuLawDecoding)
192
193
194
195


if __name__ == '__main__':
    unittest.main()